R IR Y S "
r 7 - &=

|

. !

e LR LT

= - s . ; | " ‘ﬁhv—-

" - e 1
g it S 2 : = : -
| & - B ‘ N §

Tt ,g

problems

..“L'“!!x = 3

Quick

SQL Server 2012 with
PowerShell V3 Cookbook

nell w ,_
INd automate repetitive

Donabel Santos [PACKT]s1i=Rlte

PUBLISHING

SQL Server 2012
with PowerShell V3
Cookbook

Increase your productivity as a DBA, developer, or IT Pro, by using PowerShell with SQL Server
to simplify database management and automate repetitive, mundane tasks.

Donabel Santos

enterprise 8
PUBLISHING

BIRMINGHAM - MUMBAI

SQL Server 2012 with PowerShell V3
Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2012

Production Reference: 1151012

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-646-4
www . packtpub.com

Cover Image by Artie Ng (artherng@yahoo. com. au)

Credits

Author
Donabel Santos

Reviewers
Edwin Sarmiento

Laerte Poltronieri Junior

Acquisition Editor
Rukhsana Khambatta

Lead Technical Editor
Azharuddin Sheikh

Technical Editors
Charmaine Pereira

Sharvari Baet

Jalasha D'costa

Copy Editors
Alfida Paiva

Brandt D'Mello
Insiya Morbiwala

Aditya Nair

Project Coordinator
Yashodhan Dere

Proofreader
Chris Smith

Indexer
Tejal R. Soni

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Donabel Santos is a SQL Server MVP and is the senior SQL Server Developer/DBA/
Trainer at QueryWorks Solutions, a consulting and training company in Vancouver, BC. She
has worked with SQL Server since version 2000 in numerous development, tuning, reporting,
and integration projects with ERPs, CRMs, SharePoint, and other custom applications. She
holds MCITP certifications for SQL Server 2005/2008, and an MCTS for SharePoint. She is a
Microsoft Certified Trainer (MCT), and is also the lead instructor for SQL Server Administration,
Development, and SSIS courses at British Columbia Institute of Technology (BCIT).

Donabel is a proud member of PASS (Professional Association of SQL Server), and a proud BCIT
alumna (CST diploma and degree). She blogs (www . sqglmusings . com), tweets (@sglbelle),
speaks and presents (SQLSaturday, VANPASS, Vancouver TechFest, and so on), trains (BCIT,
QueryWorks Solutions), and writes (Packt, Idera, SSWUG, and so on).

Acknowledgement

Writing a book would not be possible without the unwavering support of family, friends,
colleagues, mentors, acquaintances, and an awesome community. This is my first book,
a dream come true, so please forgive me if | go overboard with my thanks.

To Eric, thank you... for finding me. Despite long days, sleepless nights, lengthy writing
marathons, one smile from you never fails to wipe away my tiredness. Thank you for always
supporting me, for believing in me, for helping me reach whichever dreams | dare to chase.
I look forward to our journey together—a lifelong of hopes, dreams, and happiness.

To Mama and Papa, | am the luckiest daughter to have you as my parents. Thank you for all
the sacrifices you made for me and my brothers. Words are not enough to express how much
we love you, and how grateful we will always be.

To JR and RR—you will always be my baby brothers, and | am so proud to be your big sis. To
Lisa, my dear sis-in-law, thank you for being part of our family. The whole family adores you.
To Veronica, thanks for keeping up with the Santos' quirks. You're cool, girl! Now that the book
is done, we can all play more Kinect, Acquire, and Ticket to Ride.

To my in laws—Mom Lisa, Dad Richard, Ama, Aunt Rose, Catherine, David, and Jayden—thank
you for always making me feel welcome, for never making me feel | am different from your
family. And to my unborn niece Kristina, auntie will teach you and Jayden SQL Server... one of
these years.

To Edwin Sarmiento and Laerte Junior—my utmost and sincerest thanks for all the advice
and constructive feedback. | have the highest respect for both of you. It is very humbling to
work with both of you, and | learned so much from all the corrections and suggestions. Thank
you for bearing with me through the revisions, despite your respective hectic schedules and
numerous other commitments. | am very grateful.

To Elsie Au, thank you for introducing me to databases. | cannot imagine doing anything else.
Thank you for the friendship all these years. To Kevin Cudihee, thank you for all the support all
these years, for letting me do two things that | love the most—teaching and SQL Server. To Anne
Marie Johnston and Alan Marchant, thank you for giving me fun work with databases. To my
students, thank you for learning, sharing, and growing with me.

To BCIT—my second home. To me, BCIT was my place of refuge. When | was at a low point in
my life, feeling down and out, and without direction (and afraid of computers!), BCIT provided
me a place to learn, grow, and dream again. Now as an instructor, | hope | can help give back
to students what BCIT gave me when | was one.

To the SQL community, the SQL family, and the SQL Server MVPs—| am so proud to be part
of this group. There are so many smart SQL rockstars that | admire (Brent Ozar, Glenn Berry,
Kevin Kline, Brian Knight, Grant Fritchey, Jorge Sergarra, Jeremiah Peschka, Jen Stirrup, and
so many others | would love to mention and thank), who are way up there, yet who are always
ready to help and inspire anyone who asks. "Community" for this group is not just lip service.
It's the SQL way of life. | have learned so much from this community, and | would not be
anywhere near where | am today if not for the selfless way this community shares and helps.

To the PowerShell community, thank you to the awesome authors, bloggers, and tweeps.
Your articles, blogs, and books have immensely helped folks like me to learn, understand,
and get excited about PowerShell.To Microsoft and the SQL Server and PowerShell respective
Product Teams —thanks for creating these two amazing products. It doubles the fun for SQL
geeks like me!

To the Packt team—Dhwani Dewater, Yashodhan Dere, Azharuddin Sheikh, Charmaine Pereira,
Sharvari Baet and the rest of the editors and technical reviewers—thank you for giving me the
chance to write this book and helping me as the book writing progressed. It is one of the most
humbling, but also one of the most rewarding experiences.

To numerous friends (Shereen Qumsieh, Matthew Carriere, Grace Dimaculangan, Ben Peach,
Yaroslav Pentsarskyy, Joe Xing, Min Zhu, Mary Mootatamby, Blake Wiggs, and many others), to
all of my mentors and students, acquaintances via twitter (such as @pinaldave, @dsfnet,
@StangSCT, @retracement, @NikoNeugebauer, @TimCost), and so many others who
have helped, inspired, and encouraged me along the way—thank you.

And most importantly, thank you Lord, for all the miracles and blessings in my life.

About the Reviewers

Edwin Sarmiento is a Microsoft SQL Server MVP from Ottawa, Canada specializing in
high availability, disaster recovery, and system infrastructures running on the Microsoft
server technology stack. He is very passionate about technology but has interests in music,
professional and organizational development, leadership, and management matters when
not working with databases. He lives up to his primary mission statement—To help people
and organizations grow and develop their full potential as God has planned for them.

He wants the whole world to know that the FILIPINO is a world-class citizen and brings
Jesus Christ to the world.

Laerte Poltronieri Junior started in the IT world early, at the age of 12. When 16, he was
developing software using Clipper Summer 85 and he used almost all versions. Then in 1998
he was introduced to SQL Server 6.5; since then it was love at first sight and marriage. In 2008,
he met PowerShell and as he is an aficionado for automated, smart, and flexible solutions in
SQL Server, from this marriage was born a son. And today they are a happy family.

Currently, he is writing a book for Manning Publications.

First of all, | would like to thank God. | have not always been a guy next
to him, but I'm learning to give back all the love and affection that he has
given me.

My family—my father, an unforgettable super-hero, my beloved mother
and grandma, and my dear sister and nephews.

Also, a special thanks to some exceptional professionals and friends who
are teaching and mentoring me from the beginning: Buck Woody, Chad
Miller, Shay Levy, and Ravikanth Chaganti.

And last but not the least, all the #sqlfamily , #powershell and Simple-Talk
friends, you guys simply rock. | owe you all the good things that happened
and are happening to me.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[a] PACKT

http://PacktLib.PacktPub.com

(]

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content
» Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents

Preface 1
Chapter 1: Getting Started with SQL Server and PowerShell 7
Introduction 7
Before you start: Working with SQL Server and PowerShell 10
Working with the sample code 12
Exploring the SQL Server PowerShell hierarchy 14
Installing SMO 18
Loading SMO assemblies 20
Discovering SQL-related cmdlets and modules 22
Creating a SQL Server instance object 29
Exploring SMO server objects 32
Chapter 2: SQL Server and PowerShell Basic Tasks 35
Introduction 36
Listing SQL Server instances 39
Discovering SQL Server services 43
Starting/stopping SQL Server services 45
Listing SQL Server configuration settings 51
Changing SQL Server instance configurations 55
Searching for database objects 60
Creating a database 67
Altering database properties 68
Dropping a database 72
Changing a database owner 73
Creating a table 75
Creating a view 81
Creating a stored procedure 85
Creating a trigger 90
Creating an index 95

Table of Contents

Executing a query / SQL script 99
Performing bulk export using Invoke-Sqlcmd 100
Performing bulk export using bcp 102
Performing bulk import using BULK INSERT 105
Performing bulk import using bcp 110
Chapter 3: Basic Administration 115
Introduction 116
Creating a SQL Server instance inventory 116
Creating a SQL Server database inventory 120
Listing installed hotfixes and service packs 124
Listing running/blocking processes 128
Killing a blocking process 131
Checking disk space usage 133
Setting up WMI Server event alerts 136
Detaching a database 143
Attaching a database 145
Copying a database 149
Executing a SQL query to multiple servers 152
Creating a filegroup 153
Adding secondary data files to a filegroup 156
Moving an index to a different filegroup 158
Checking index fragmentation 162
Reorganizing/rebuilding an index 164
Running DBCC commands 167
Setting up Database Mail 168
Listing SQL Server jobs 178
Adding a SQL Server operator 181
Creating a SQL Server job 183
Adding a SQL Server event alert 187
Running a SQL Server job 190
Scheduling a SQL Server job 192
Chapter 4: Security 203
Introduction 203
Listing SQL Server service accounts 204
Changing SQL Server service account 206
Listing authentication modes 210
Changing authentication mode 211
Listing SQL Server log errors 215
Listing failed login attempts 220
Listing logins, users, and database mappings 222

Table of Contents

Listing login/user roles and permissions 225
Creating a login 227
Assigning permissions and roles to a login 229
Creating a database user 232
Assigning permissions to a database user 234
Creating a database role 237
Fixing orphaned users 241
Creating a credential 244
Creating a proxy 246
Chapter 5: Advanced Administration 251
Introduction 252
Listing facets and facet properties 252
Listing policies 254
Exporting a policy 257
Importing a policy 261
Creating a condition 264
Creating a policy 268
Evaluating a policy 272
Enabling/disabling change tracking 275
Running and saving a profiler trace event 276
Extracting the contents of a trace file 284
Creating a database master key 289
Creating a certificate 291
Creating symmetric and asymmetric keys 293
Setting up Transparent Data Encryption (TDE) 299
Chapter 6: Backup and Restore 305
Introduction 305
Changing database recovery model 306
Listing backup history 309
Creating a backup device 310
Listing backup header and file list information 312
Creating a full backup 316
Creating a backup on mirrored media sets 321
Creating a differential backup 324
Creating a transaction log backup 327
Creating a filegroup backup 329
Restoring a database to a point in time 332
Performing an online piecemeal restore 342

Table of Contents

Chapter 7: SQL Server Development 351
Introduction 351
Inserting XML into SQL Server 352
Extracting XML from SQL Server 355
Creating an RSS feed from SQL Server content 358
Applying XSL to an RSS feed 363
Storing binary data into SQL Server 366
Extracting binary data from SQL Server 370
Creating a new assembly 374
Listing user-defined assemblies 378
Extracting user-defined assemblies 379

Chapter 8: Business Intelligence 385
Introduction 386
Listing items in your SSRS Report Server 386
Listing SSRS report properties 388
Using ReportViewer to view your SSRS report 391
Downloading an SSRS report in Excel and PDF 396
Creating an SSRS folder 400
Creating an SSRS data source 404
Changing an SSRS report's data source reference 409
Uploading an SSRS report to Report Manager 412
Downloading all SSRS report RDL files 416
Adding a user with a role to an SSRS report 421
Creating folders in an SSIS package store and MSDB 425
Deploying an SSIS package to the package store 428
Executing an SSIS package stored in the package store or File System 430
Downloading an SSIS package to a file 433
Creating an SSISDB catalog 435
Creating an SSISDB folder 439
Deploying an ISPAC file to SSISDB 441
Executing an SSIS package stored in SSISDB 444
Listing SSAS cmdlets 447
Listing SSAS instance properties 448
Backing up an SSAS database 450
Restoring an SSAS database 451
Processing an SSAS cube 452

Chapter 9: Helpful PowerShell Snippets 455
Introduction 456
Documenting PowerShell script for Get-Help 456
Getting a timestamp 459

Table of Contents

Getting additional error messages 461
Listing processes 462
Getting aliases 466
Exporting to CSV and XML 467
Using Invoke-Expression 468
Testing regular expressions 470
Managing folders 474
Manipulating files 476
Searching for files 478
Reading an event log 481
Sending e-mail 482
Embedding C# code 484
Creating an HTML report 486
Parsing XML 488
Extracting data from a web service 490
Using PowerShell Remoting 492
Appendix A: SQL Server and PowerShell CheatSheet 497
Learning PowerShell 497
PowerShell V2 versus V3 Where-Object syntax 498
Changing execution policy 498
Running a script 499
Common aliases 499
Displaying output 500
Special characters 500
Special variables 501
Common operators 502
Common date-time format strings 502
Comment based help 503
Here-string 504
Common regex characters and patterns 504
Arrays and hash tables 505
Arrays and loops 506
Logic 506
Functions 507
Common Cmdlets 508
Import SQLPS module 509
Add SQL Server Snapins 509
Add SQL Server Assemblies 509
Getting credentials 510
Running and blocking SQL Server processes 510
Read file into an array 510

(v -

Table of Contents

SQL Server-Specific Cmdlets 510
Invoke-SqlCmd 512
Create SMO Server Object 512
Create SSRS Proxy Object 512
Create SSIS Object (SQL Server 2005/2008/2008R2) 513
Create an SSIS Object (SQL Server 2012) 513
Create SSAS Object 513
Appendix B: PowerShell Primer 515
Introduction 515
What is PowerShell, and why learn another language 515
Setting up the Environment 516
Running PowerShell scripts 517
Basics—points to remember 520
Scripting syntax 527
Converting script into functions 539
More about PowerShell 542
Appendix C: Resources 543
Resources 543
Appendix D: Creating a SQL Server VM 549
Introduction 549
Terminology 550
Downloading software 551
VM details and accounts 552
Creating an empty virtual machine 553
Installing Windows Server 2008 R2 as
Guest 0S 556
Installing VMWare tools 567
Configuring a domain controller 569
Creating domain accounts 577
Installing SQL Server 2012 on a VM 580
Installing sample databases 598
Installing PowerShell V3 598
Index 601

Preface

PowerShell is Microsoft's new command-line shell and scripting language that promises to
simplify automation and integration across different Microsoft applications and components.
Database professionals can leverage PowerShell by utilizing its numerous built-in cmdlets,
or using any of the readily available .NET classes, to automate database tasks, simplify
integration, or just discover new ways to accomplish the job at hand.

SQL Server 2012 with PowerShell V3 Cookbook provides easy-to-follow, practical examples
for the busy database professional. Whether you're auditing your servers, or exporting data,
or deploying reports, there is a recipe that you can use right away!

You start off with basic topics to get you going with SQL Server and PowerShell scripts
and progress into more advanced topics to help you manage and administer your SQL
Server databases.

The first few chapters demonstrate how to work with SQL Server settings and objects,
including exploring objects, creating databases, configuring server settings, and performing
inventories. The book then dives deeply into more administration topics such as backup and
restore, credentials, policies, and jobs.

Additional development and Bl-specific topics are also explored, including deploying and
downloading assemblies, BLOB data, SSIS packages, and SSRS reports.

A short PowerShell primer is also provided as a supplement in the Appendix, which the
database professional can use as a refresher or occasional reference material. Packed with
more than 100 practical, ready-to-use scripts, SQL Server 2012 with PowerShell V3 Cookbook
will be your go-to reference in automating and managing SQL Server.

What this book covers

Chapter 1, Getting Started with SQL Server and PowerShell explains what PowerShell is, and
why you should consider learning PowerShell. It also introduces PowerShell V3 new features,
and explains what needs to be in place when working with SQL Server 2012 and PowerShell.

Preface

Chapter 2, SQL Server and PowerShell Basic Tasks demonstrates scripts and snippets
of code that accomplish some basic SQL Server tasks using PowerShell. We start with
simple tasks such as listing SQL Server instances, and creating objects such as tables,
indexes, stored procedures, and functions to get you comfortable while working with
SQL Server programmatically.

Chapter 3, Basic Administration tackles more administrative tasks that can be accomplished
using PowerShell, and provides recipes that can help automate a lot of repetitive tasks. Some
recipes deal with instance and database properties; others provide ways of checking disk space,
creating WMI alerts, setting up Database Mail, and creating and maintaining SQL Server Jobs.

Chapter 4, Security provides snippets that simplify security monitoring, including how to check
failed login attempts by parsing out event logs, or how to administer roles and permissions.

Chapter 5, Advanced Administration shows how PowerShell can help you leverage features
such as Policy Based Management (PBM) and encryption using PowerShell. This chapter also
explores working with SQL Server Profiler trace files and events programmatically.

Chapter 6, Backup and Restore looks into different ways of backing up and restoring SQL
Server databases programmatically using PowerShell.

Chapter 7, SQL Server Development provides snippets and guidance on how you can work
with XML, XSL, binary data, and CLR assemblies with SQL Server and PowerShell.

Chapter 8, Business Intelligence covers how PowerShell can help automate and manage any
Bl-related tasks—from rendering SQL Server Reporting Services (SSRS) reports, to deploying
the new SQL Server Integration Services (SSIS) 2012 ISPAC files, to backing up and restoring
SQL Server Analysis Services (SSAS) cubes.

Chapter 9, Helpful PowerShell Snippets tackles a variety of recipes that are not SQL Server
specific, but you may find them useful as you work with PowerShell. Recipes include snippets
for creating files that use timestamps, analyzing event logs for recent system errors, and
exporting a list of processes to CSV or XML.

Appendix A, SQL Server and PowerShell CheatSheet provides a concise cheatsheet of
commonly used terms and snippets when working with SQL Server and PowerShell.

Appendix B, PowerShell Primer offers a brief primer on PowerShell fundamentals.
Appendix C, Resources lists additional PowerShell and SQL Server books, blogs and links.

Appendix D, Creating a SQL Server VM provides a step-by-step tutorial on how to create and
configure the virtual machine that was used for this book.

Preface

What you need for this book
Windows Server 2008 R2

SQL Server 2012 Developer

Visual Studio 2010 Professional

Windows Management Framework 3.0 (includes PowerShell 3.0, WMI, and WinRM)

Who this book is for

This book is written for the SQL Server database professional (DBA, developer, Bl developer)
who wants to use PowerShell to automate, integrate, and simplify database tasks. A little bit
of scripting background is helpful, but not necessary.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

$instanceName = "KERRIGAN"

SmanagedComputer = New-Object 'Microsoft.SglServer.Management.Smo.Wni.
ManagedComputer' S$instanceName

#list server instances
SmanagedComputer.ServerInstances

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

S$instanceName = "KERRIGAN"

SmanagedComputer = New-Object 'Microsoft.SglServer.Management.Smo.Wmni.
ManagedComputer' $instanceName

#list server instances
SmanagedComputer.ServerInstances

Any command-line input or output is written as follows:

PS C:\>. .\SampleScript.psl paraml param2
PS C:\>C:\MyScripts\SampleScript.psl paraml param2

Preface

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www . packtpub. com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub. com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http: //www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any

list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Getting Started
with SQL Server
and PowerShell

In this chapter, we will cover:

» Working with the sample code

Exploring the SQL Server PowerShell hierarchy

v

» Installing SMO

» Loading SMO assemblies

» Discovering SQL-related cmdlets and modules
» Creating a SQL Server instance object

» Exploring SMO Server objects

Introduction

PowerShell is an administrative tool that has both shell and scripting capabilities that can
leverage Windows Management Instrumentation (WMI), COM components, and .NET libraries.
PowerShell is becoming more prominent with each generation of Microsoft products. Support
for it is being bundled, and improved, in a number of new and upcoming Microsoft product
releases. Windows Server, Exchange, ActiveDirectory, SharePoint, and even SQL Server, have

all shipped with added PowerShell support and cmdlets. Even vendors such as VMWare, Citrix,
Cisco, and Quest, to name a few, have provided ways to allow their products to be accessible
via PowerShell.

Getting Started with SQL Server and PowerShell

What makes PowerShell tick? Every systems administrator probably knows the pain of
trying to integrate heterogeneous systems using some kind of scripting. Historically, the
solution involved some kind of VBScript, some good old batch files, maybe some C#
code, some Perl—you name it. Sysadmins either had to resort to duct taping different
languages together to get things to work the way they intended, or just did not bother
because of the complicated code.

This is where PowerShell comes in. One of the strongest points for PowerShell is that it
simplifies automation and integration between different Microsoft ecosystems. As most
products have support for PowerShell, getting one system to talk to another is just a matter
of discovering what cmdlets, functions, or modules need to be pulled into the script. Even if
the product does not have support yet for PowerShell, it most likely has .NET or COM support,
which PowerShell can easily use.

Notable PowerShell V3 features

Some of the notable features in the latest PowerShell version are:

» Workflows: PowerShell V3 introduces Windows PowerShell Workflow (PSWF),
which as stated in MSDN (http://msdn.microsoft.com/en-us/library/
jj134242.aspx):

helps automate the distribution, orchestration, and completion of
multi-computer tasks, freeing users and administrators to focus on
higher-level tasks.

PSWF leverages Windows Workflow Foundation 4.0 for the declarative framework,
but using familiar PowerShell syntax and constructs.

» Robust sessions: PowerShell V3 supports more robust sessions. Sessions can now
be retained amid network interruptions. These sessions will remain open until they
time out.

» Scheduled jobs: There is an improved support for scheduled tasks. There are new
cmdlets in the PSScheduledJob module that allow you to create, enable, and
manage scheduled tasks.

» Module AutoLoading: If you use a cmdlet that belongs to a module that hasn't been
loaded yet, this will trigger PowerShell to search PSModulePath and load the first
module that contains that cmdlet. This is something we can easily test:

Chapter 1

#check current modules in session
Get-Module

#use cmdlet from CimCmdlets module, which
#is not loaded yet
Get-CimInstance win32 bios

#note new module loaded CimCmdlets
Get-Module

#use cmdlet from SQLPS module, which
#is not loaded yet
Invoke-Sglcmd -Query "SELECT GETDATE ()" -ServerInstance "KERRIGAN"

#note new modules loaded SQLPS and SQLASCmdlets
Get-Module

Web service support: PowerShell V3 introduces the Invoke-WebRequest cmdlet,
which sends HTTP or HTTPS requests to a web service and returns the object-

based content that can easily be manipulated in PowerShell. You can think about
downloading entire websites using PowerShell (and check out Lee Holmes' article on
it: http://www.leeholmes.com/blog/2012/03/31/how-to-download-an-
entire-wordpress-blog/).

Simplified language syntax: Writing your Where-Object and Foreach-Object
has just become cleaner. Improvements in the language include supporting default
parameter values, and simplified syntax.

What you used to write in V1 and V2 with curly braces and $__ as follows:
Get-Service | Where-Object { $_ .Status -eq 'Running' }

can now be rewritten in V3 as:

Get-Service | Where-Object Status -eq 'Running'’

http://www.leeholmes.com/blog/2012/03/31/how-to-download-an-entire-wordpress-blog/
http://www.leeholmes.com/blog/2012/03/31/how-to-download-an-entire-wordpress-blog/

Getting Started with SQL Server and PowerShell

» Improved Integrated Scripting Environment (ISE): The new ISE comes with
Intellisense, searchable commands in the sidebar, parameter forms, and live
syntax checking.

[Administrator: Windows PowerShell 1SE ol =l

Fle Edit View Debug Add-ons Help Searchable Commands
[= I ax»| 9 B & &F
Untitled12.ps1* X Intellisense - Commands X x
1 (.;E,t_l Modules: IAII j
£} [Get-Adl il
£} Get-Als Mame: ICon\:er
£} Get-AppLockerFileInforration
I—_‘|>I' pp : ConvertFrom-Csv =]
Ep Get-AppLockerPolicy T R e
£} Get-AuthenticodeSignature ConvertFrom-SecureString J
5d R ConvertFrom-5tringData
.&—.D: Get-BitsTransfer ConvertTo-Cen
&_I)\ Get-BpaModel ConvertTo-Himl ;I
£} Get-BpaResult
= Parameters: B
Ejl Get-Chiditem =l SIAmEEs Bl

ConvertFrom-Json |

PS SQLSERVER:\> parameter Form _—l—r—.lnputobject: & |

“

~ Common Parameters

¥ Sho. F\||‘| lns-ertl Cowl Hide

Zoom Lnl Col5 '—l—120%j

Before you start: Working with SQL Server

and PowerShell

Before we dive into the recipes, let's go over a few important concepts and terminologijes that
will help you understand how SQL Server and PowerShell can work together:

» PSProvider and PSDrive: PowerShell allows different data stores to be accessed as if
they are regular files and folders. PSProvider is similar to an adapter, which allows
these data stores to be seen as drives.

To get a list of the supported PSProvider objects, type:

Get-PSProvider

You should see something similar to the following screenshot:

Name

Alias
Environment
FileSystem
Function
Registry
variable
Certificate
WSMan
sqlserver

Capabilities
shouldProcess
shouldProcess

Filter, shouldProcess

shouldProcess

shouldProcess, Transactions

ShouldProcess
ShouldProcess
Credentials
Credentials

Drives
{Alias}
{Env}

{c, A, D}
{Function}
{HKLM, HKCU}
{variable}
{Cert}
{wsMan}
{SQLSERVER}

Chapter 1

Depending on which instance of PSProvider is already available in your system,
yours may be slightly different:

PSDrive: Think of your C: \, but for data stores other than the file system. To get a
list of PSDrive objects in your system, type:

Get-PSDrive

You should see something similar to the following screenshot:

Name Used (GB) Free (GB) Provider Root

A FileSystem A\

Alias Alias

C 46.18 33.72 Filesystem RN

Cert Certificate \

D FileSystem D:Y

Env Environment

Function Function

HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE
SQLSERVER sqlserver SQLSERVER:\
variable variable

WSMan WSMan

Note that there is a PSDrive for SQLServer, which can be used to navigate, access,
and manipulate SQL Server objects.

Execution policy: By default, PowerShell will abide by the current execution policy to
determine what kind of scripts can be run. For our recipes, we are going to assume
that you will run PowerShell as the administrator on your test environment. You will
also need to set the execution policy to RemoteSigned:

Set-ExecutionPolicy RemoteSigned

This setting will allow PowerShell to run digitally-signed scripts, or
local unsigned scripts.

Modules and snap-ins: Modules and snap-ins are ways to extend PowerShell. Both
modules and snap-ins can add cmdlets and providers to your current session. Modules
can additionally load functions, variables, aliases, and other tools to your session.

s

Getting Started with SQL Server and PowerShell

Snap-ins are Dynamically Linked Libraries (DLL), and need to be registered before
they can be used. Snap-ins are available in V1, V2, and V3. For example:

Add-PSSnapin SglServerCmdletSnapinl00

Modules, on the other hand, are more like your regular PowerShell .ps1 script files.
Modules are available in V2 and V3. You do not need to register a module to use it,
you just need to import:

Import-Module SQLPS

For more information on PowerShell basics, check out Appendix B,
Vi PowerShell Primer.

Working with the sample code

Samples in this book have been created and tested against SQL Server 2012 on Windows
Server 2008 R2.

that the book uses, see Appendix D, Creating a SQL Server VM.

How to do it...

If you want to use your current machine without creating a separate VM, as illustrated in
Appendix D, Creating a SQL Server VM, follow these steps to prepare your machine:

[To work with the sample code in this book using a similar VM setup]
i

1. Install SQL Server 2012 on your current operating system—either Windows 7
or Windows Server 2008 R2. See the list of supported operating systems for
SQL Server 2012:

http://msdn.microsoft.com/en-us/library/msl43506.aspx

2. Install PowerShell V3.

Although PowerShell V3 comes installed with Windows 8 and Windows Server 2012,
at the time of writing this book these two operating systems are not listed in the list
of operating systems that SQL Server 2012 supports.

To install PowerShell V3 on Windows 7 SP1, Windows Server 2008 SP2,
or Windows Server 2008 R2 SP1:

Install Microsoft .NET Framework 4.0, if it's not already there.

http://msdn.microsoft.com/en-us/library/ms143506.aspx
http://msdn.microsoft.com/en-us/library/ms143506.aspx
http://msdn.microsoft.com/en-us/library/ms143506.aspx

Chapter 1

Download and install Windows Management Framework 3.0, which contains
PowerShell V3. At the time of writing this book, the Release Candidate (RC)
is available from:

http://www.microsoft.com/en-us/download/details.
aspx?id=29939
3. Enable PowerShell V3 ISE. We will be using the improved Integrated Scripting
Environment in many samples in this book:

o Right-click on Windows PowerShell on your taskbar and choose Run
as Administrator.

o Execute the following:
PS C:\Users\Administrator>Import-Module ServerManager PS C:\
Users\Administrator>Add-WindowsFeature PowerShell-ISE

o Test to ensure you can see and launch the ISE:
PS C:\Users\Administrator> powershell ise

Alternatively you can go to Start | All Programs | Accessories | Windows
PowerShell | Windows PowerShell ISE.

o Set execution policy to RemoteSigned by executing the following,

on the code editor:

Set-ExecutionPolicy RemoteSigned

. If you want to run PowerShell V2 and V3 side by side, you can check out
a Jeffery Hicks' article, PowerShell 2 and 3, Side by Side:
/;(

http://mcpmag.com/articles/2011/12/20/powershell-
2-and-3-side-by-side.aspx

» Check out the PowerShell V3 Sneak Peek Screencast:
http://technet.microsoft.com/en-us/edge/Video/hh533298

» See also the SQL Server PowerShell documentation on MSDN:
http://msdn.microsoft.com/en-us/library/hh245198 (SQL.110) .aspx

http://www.microsoft.com/en-us/download/details.aspx?id=29939
http://www.microsoft.com/en-us/download/details.aspx?id=29939
http://www.microsoft.com/en-us/download/details.aspx?id=29939
http://mcpmag.com/articles/2011/12/20/powershell-2-and-3-side-by-side.aspx
http://mcpmag.com/articles/2011/12/20/powershell-2-and-3-side-by-side.aspx
http://technet.microsoft.com/en-us/edge/Video/hh533298
http://technet.microsoft.com/en-us/edge/Video/hh533298
http://msdn.microsoft.com/en-us/library/hh245198(SQL.110).aspx
http://msdn.microsoft.com/en-us/library/hh245198(SQL.110).aspx

Getting Started with SQL Server and PowerShell

Exploring the SQL Server PowerShell

hierarchy

In SQL Server 2012, the original mini-shell has been deprecated, and SQLPS is now provided

as a module. Launching PowerShell from SSMS now launches a Windows PowerShell session,
imports the SQLPS module, and sets the current context to the item the PowerShell session was
launched from. DBAs and developers can then start navigating the object hierarchy from here.

Getting ready

Log in to SQL Server 2012 Management Studio.

How to do it...

In this recipe, we will navigate the SQL Server PowerShell hierarchy by launching a PowerShell
session from SQL Server Management Studio:

1. Right-click on your instance node.

2. Click on Start PowerShell. This will launch a PowerShell session and load the SQLPS
module. This window looks similar to a command prompt, with a prompt set to the
SQL Server object you launched this window from:

Bx SQL Server Powershell
PS5 SOLSERVER:'\SOLA\KERRIGAWN\DEFAULT:

Note the starting path in this window.

3. Type dir. This should give you a list of all objects directly accessible from the current
server instance—in our case, from the default SQL Server instance KERRIGAN. Note
that dir is an alias for the cmdlet Get-ChildItem.

By SQL Server Powershell

Resour ceGovernor

Roles
ServerauditSpeciftications
SystemDataTypes
SystemMessages

riggers
UserDefinedvessages

Chapter 1

This is similar to the objects you can find under the instance node in Object Explorer
in SQL Server Management Studio.

Connect~ 3 3d m E;

3@ Databases
= [Security
[Legins
[Server Roles
[_J Credentials
.3 Cryptographic Providers
[Audits
3 Server Audit Spedfications
= [Server Objects
[_J Badkup Devices
3 Endpoints
3 Linked Servers
[l Triggers
= [Replication
[J Local Publications
3 Local Subscriptions
3 AlwaysOn High Availability
= [Management
L# Policy Management
+1 Data Collection
33} Resource Governor
Ed Extended Events
[_d Maintenance Plans
[SQL Server Logs

I3, Database Mail
Qﬁ Distributed Transaction Coordinator
[Legacy
E 3 Integration Services Catalogs

[ss1sDE
e

3 Jobs
5] Job Activity Monitor

=) |y KERRIGAN (SQL Server 11.0.2100 - KERRIGAN \Administrator)

While our PowerShell window is open, let's explore the SQL Server PSDrive, or the
SQL Server data store, which PowerShell treats as a series of items. Type cd\ . This will
change the path to the root of the current drive, which is our SQL Server PSDrive.

Type dir. This will list all tems accessible from the root SQL Server pPSDrive. You
should see something similar to the following screenshot:

PS SQLSERVER:\>

Name

sl
SQLPolicy
SQLRegistration
DataCollection
XEvent

UtiTity

DAC
IntegrationServ

1 ces
SQLAS

B SQL Server Powershell

P5 SQLSERVER:\S5QLYKERRIGANYDEFAULT=> C

dir

Root Description
SQLSERVER: \SQL . 5QL Server
SQLSERVER:\SQLPolicy SQL Server
SQLSERVER:\SQLRegistration SQL Server
SQLSERVER:\DataCollection SQL Server
SQLSERVER: “XEvent SQL Serwver
SOLSERVER:\Utility SQL Server
SOLSERVER: \DAC 5QL Server
nt
SQLSERVER:\IntegrationServices SQL Server
SQLSERVER: \SQLAS SQL Server

Database Engine

Policy Management
Registrations

Data Collection

Extended Events

utility

Data-Tier Application Compone

Integration Services

Analysis Serwices

]

Getting Started with SQL Server and PowerShell

Close this window.
Go back to Management Studio, and right-click on one of your user databases.

Click on Start PowerShell. Note that this will launch another PowerShell session,
with a path that points to the database you right-clicked from:

Fx SQL Server Powershell

ApplicationRoles
Assemblies
AsymmetricKeys

ertificates
DatabaseAuditSpecifications
Defaults
ExtendedProperties
ExtendedStoredProcedures

StoredProcedures
SymmetricKeys

riggers

UserDefinedAggregates

UserDefinedDataTypes

UserDefinedFunctions

UserDefinedTableTypes
o [lo [=1r 2

Note that the starting path of this window is different from the starting
path when you first launched PowerShell in the second step. If you type
dir from this location, you will see all items that are sitting underneath
the AdventureWorks2008R2 database.

Chapter 1

(Object Explorer -
Comect~ 33) = T 2] 3§ ;
= Ld KERRIGAM (SQL Server 11.0,2100 - KERRIGAN\Administratoy

= [Databases
[l System Databases
[l Database Snapshots
B [J AdventureW 12
|_1l Database Diagrams
1 Tables
L Views
1 Synonyms
= [Programmability
[l Stored Procedures
[Functions
[Database Triggers
[l Assemblies
[J Types
[Rules
[Defaults
[l Plan Guides
[Seguences
[Service Broker
= [Storage
[Ful Text Catalogs
[Partition Schemes
[l Partition Functions
[Full Text Stoplists
[l Search Property Lists
[= 3 Security
[l Users
[Roles
[Schemas
[Asymmetric Keys
[J Certificates
[Symmetric Keys

You can see some of the items enumerated in this screen in SQL Server Management
Studio's Object Explorer, if you expand the AdventureWorks2008R2 database node.

When PowerShell is launched through Management Studio, a context-sensitive PowerShell
session is created, which automatically loads the sQL.PS module. This will be evident in
the prompt, which by default shows the current path of the object from which the Start
PowerShell menu item was clicked.

Ty SQL Server Powershell

Getting Started with SQL Server and PowerShell

SQL Server 2008/2008 R2 was shipped with a SQLPS mini-shell, also referred to as SQLPS
utility. This can also be launched from SSMS by right-clicking on an object from Object
Explorer, and clicking on Start PowerShell. This mini-shell was designed to be a closed shell
preloaded with SQL Server extensions. This shell was meant to be used for SQL Server only,
which proved to be quite limiting because DBAs and developers often need to load additional
snap-ins and modules in order to integrate SQL Server with other systems through PowerShell.
The alternative way is to launch a full-fledged PowerShell session, and depending on your
PowerShell version either load snap-ins or load the SQL.PS module.

In SQL Server 2012, the original mini-shell has been deprecated. When you launch a PowerShell
session from SSMS in SQL Server 2012, it launches the full-fledged PowerShell session, with the
updated SQLPS module loaded by default.

SQL Server is exposed as a PowerShell drive (PSDrive), which allows for traversing of objects
as if they are folders and files. Thus, familiar commands for traversing directories are supported
in this provider, such as dir or 1s. Note that these familiar commands are often just aliases to
the real cmdlet name, in this case, Get-ChildItem.

When you launch PowerShell from Management Studio, you can immediately start navigating
the SQL Server PowerShell hierarchy.

Installing SMO

SQL Server Management Objects (SMO) was introduced with SQL Server 2005 to allow SQL
Server to be accessed and managed programmatically. SMO can be used in any .NET language,
including C#, VB.NET, and PowerShell. SMO is the key to automating most SQL Server tasks.
SMO is also backward compatible to previous versions of SQL Server, extending support all the
way to SQL Server 2000.

SMO is comprised of two distinct classes: instance classes and utility classes.

Instance classes are the SQL Server objects. Properties of objects such as the server, the
databases, and tables can be accessed and set using the instance classes.

Utility classes are helper or utility classes that accomplish common SQL Server tasks.
These classes belong to one of three groups: Transfer class, Backup and Restore classes,
or Scripter class.

To gain access to the SMO libraries, SMO needs to be installed, and the SQL Server-related
assemblies need to be loaded.

Getting ready

There are a few ways to get SMO installed:

>

Chapter 1

If you are installing SQL Server 2012, or already have SQL Server 2012, SMO can
be installed by installing Client Tools SDK. Get your install disk or image ready.

If you want just SMO installed without installing SQL Server, download the SQL

Server Feature 2012 pack.

How to do it...

If you are installing SQL Server or already have SQL Server:

1.
2.

5. Complete your installation.

Load up your SQL Server install disk or image, and launch the setup. exe file.

Select New SQL Server standalone installation or add features to an

existing installation.

Choose your installation type, and click on Next.

In the Feature Selection window, make sure you select Client Tools SDK.

Feature Selection

Select the Evaluation features to install.

Setup Support Rules
Installation Type

Feature Selection
Installation Rules

Disk Space Requirements

Error Reporting

Installation Configuration Rules
Ready to Install

Installation Progress

Complete

Features:

Instance Features
Database Engine Services
SQL Server Replication
Full-Text and Semantic Extractions for Search
Data Quality Services
Analysis Services
Reporting Services - Native
Shared Features
Reporting Services - SharePoint
Reporting Services Add-in for SharePoint Products
Data Quality Client
Business Inteligence Development Studio
Client Tools Connectivity
Integration Services
Client Tools Backwards Compatibility
Client Tools SDK ffs——
Books Online Components
Management Tools - Basic
Management Tools - Complete
["1 Distributed Replav Controller

After this, you should already have all the binaries needed to use SMO.

[}

Getting Started with SQL Server and PowerShell

If you are not installing SQL Server, you must install SMO using the SQL Server Feature Pack

on the machine you are using SMO with:

1.

By default, the SMO assemblies will be installed in <SQL Server Install Directory>\110\

Open your web browser, go to your favorite search engine, and search for

SQL Server 2012 Feature Pack.
Download the package.

Double-click on SharedManagementObjects.msi to install.

There's more...

SDK\Assemblies.

Loading SMO assemblies

Before you can use the SMO library, the assemblies need to be loaded. In SQL Server 2012,

. = Local Disk (C:) = Program Files (x86) = Microsoft SQL Server = 110 = SDK + Assemblies =

%] Microsoft. SglServer.Management. Sdk. Sfe.dll
Zaldicencoft,

glserver Mapasesent. Utility.d

this step is easier than ever.

Getting ready

SQL Management Objects(SMO) must have already been installed on your machine.

Incdude inlibrary * Share with = New folder
MName “ Date modified Type | Size

Jen 10/30/2011 12:55PM File folder
%) Microsoft, AnalysisServices DLL 6/25/20119:45 AM Application extension 1,362 KB)
| Microsoft.DataWarehouse. Interfaces. DLL 6/25/20119:45 AM Application extension 27 KB
|| Microsoft.ExceptionMessageBox.dll 6/25/20119:45 AM Application extension 134 KE3
| Microsoft.SqlServer . ConnectionInfo.dll 6/24/20116:22 FM Application extension 158 KB
)] Microsoft. SqlServer. ConnectionInfoExtended.dll 6/25/2011 9:43 AM Application extension 93 KB
) Microsoft.SqlServer.Dmf. Adapters.dll 6/25/2011 9:43 AM Application extension 62 KB
%] Microsoft.SqlServer.Dmf.dl 6/24/20116:22 FM Application extension 346 KB
%] Microsoft. SqlServer.DmfSglClrWrapper.dll 6/24/20116:22 FM Application extension
%] Microsaft. SqlServer,Dts.Design.dll 6/25/20119:43 AM Application extension
%] Microsoft.SqlServer DTSPipelineWrap. di 6/25/20119:43 AM Application extension 63 KB
%) Microsoft, SQLServer DTSRuntimeWrap.dil 6/25/20119:43 AM Application extension 175 K
%) Microsoft. SQLServer.ManagedDTs.dl 6/25/20119:43 AM Application extension 430 K
%) Microsoft. SqlServer.Management. Collector.dll 6/25/2011 3:43 AM Application extension 36 KB
%] Microsoft. SqlServer.Management. CollectorEnum.dil - 6/25/2011 9:43 AM Application extension 33K

6/24/20116:22 FPM Application extension 432 KEJ

=]

Chapter 1

How to do it...

In this recipe, we will load the SQL.PS module.
1. Open up your PowerShell console, or PowerShell ISE, or your favorite
PowerShell editor.

2. Type the import-module command as follows:
Import-Module SQLPS

3. Confirm that the module is loaded:
Get-Module

The way to load SMO assemblies has changed between different versions of PowerShell.

In PowerShell v1, loading assemblies can be done explicitly using the Load () or
LoadWithPartialName () methods. LoadWithPartialName () accepts the partial name
of the assembly, and loads from the application directory or the Global Assembly Cache (GAC):

[void] [Reflection.Assembly] : :LoadWithPartialName ("Microsoft.SglServer.
Smo")

Although LoadWithPartialName () is still supported and still remains a popular way
of loading assembilies, this method should not be used because it will be deprecated in
future versions.

Load () requires the fully qualified name of the assembly:

[void] [Reflection.Assembly] : :Load ("Microsoft.SglServer.Smo,
Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc9l")

In PowerShell V2, assemblies can be added by using Add-Type:
Add-Type -AssemblyName "Microsoft.SglServer.Smo"

In PowerShell V3, loading these assemblies one by one is no longer necessary as long as the
SQLPS module is loaded:

Import-Module SQLPS

There may be cases where you will still want to load specific DLL versions if you are dealing
with specific SQL Server versions. Or you may want to load only specific assemblies without
loading the whole SQLPS module. In this case, the Add-Type command is still the viable
method of bringing the assemblies in.

s

Getting Started with SQL Server and PowerShell

There's more...

When you import the SQL.PS module, you might see an error about conflicting or
unapproved verbs:

The names of some imported commands from the module SQLPS
* include unapproved verbs that might make them less discoverable. To

find the commands with unapproved verbs, run the Import-Module
’ command again with the Verbose parameter. For a list of approved

verbs, type Get -Verb.

This means there are some cmdlets that do not conform to the PowerShell naming
convention, but the module and its containing cmdlets are still all loaded into your host. To
suppress this warning, import the module with the -DisableNameChecking parameter.

» The Installing SMO recipe

Discovering SQL-related cmdlets and

modules

In order to be effective at working with SQL Server and PowerShell, knowing how to explore
and discover cmdlets, snap-ins, and modules is in order.

Getting ready

Log in to your SQL Server instance, and launch PowerShell ISE. If you prefer the console, you
can also launch that instead.

How to do it...

In this recipe we will list the SQL-Server related commands and cmdlets.

1. To discover SQL-related cmdlets, type the following in your PowerShell editor and run:

#thow many commands from modules that
#have SQL in the name
Get-Command -Module "*SQL*" | Measure-Object

#list all the SQL-related commands
Get-Command -Module "*SQL*" |
Select CommandType, Name, ModuleName |

Sort -Property ModuleName, CommandType, Name |

Format-Table

-AutoSize

After you execute the line, your output window should look similar to the
following screenshot:

Count
Average
Sum

M a1 mum
M1 n7mum
Property :

CommandType

Function
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet

HEE s

Add-RoleMember
Backup-ASDatabase
Invoke-ASCmd
Invoke-ProcessCube
Invoke-ProcessDimension
Invoke-ProcessPartition
Merge-Partition
New-RestoreFolder
New-RestoreLocation
Remove-RoleMember
Restore-ASDatabase
SOLSERVER

Add-5qTAvailabilityDatabase
Add-5qTlAvailabilityGrouplistenerStaticlp

Backup-5qlDatabase
Convert-UrnToPath
Decode-5q1Name
Disable-SqTHADRService

ModuleName
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SOLASCMDLETS
SOLASCMDLETS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS

Chapter 1

2. To see which of these modules are loaded, type the following in your editor and run:

Get-Module -Name "*SQL*"

If you have already used any of the cmdlets in the previous step, then you should see
both SQLPS and SQLASCMDLETS. Otherwise, you will need to load these modules
before you can use them.

3. To explicitly load these modules, type the following and run:

Import-Module -Name "SQLPS"

Note that SQLASCMDLETS will be loaded when you load SQLPS.

At the core of PowerShell are cmdlets. A cmdlet (pronounced commandlet) can be a compiled,
reusable .NET code, or an advanced function, or a workflow that typically performs a very

specific task. All cmdlets follow the verb-noun naming notation.

s

Getting Started with SQL Server and PowerShell

PowerShell ships with many cmdlets and can be further extended if the shipped cmdlets are
not sufficient for your purposes.

A legacy way of extending PowerShell is by registering additional snap-ins. A snap-in is a binary,
or a DLL, that contains cmdlets. You can create your own by building your own .NET source,
compiling, and registering the snap-in. You will always need to register snap-ins before you can
use them. Snap-ins are a popular way of extending PowerShell.

The following table summarizes common tasks with snap-ins:

Task Syntax

List loaded snap-ins Get-PSSnapin

List installed snap-ins Get-PSSnapin -Registered

Show commands in a snap-in Get-Command -Module "SnapinName"
Load a specific snap-in Add-PSSnapin "SnapinName"

When starting, PowerShell V2, modules are available as the improved and preferred method
of extending PowerShell.

A module is a package that can contain cmdlets, providers, functions, variables, and
aliases. In PowerShell V2, modules are not loaded by default, so required modules need
to be explicitly imported.

Common tasks with modules are summarized in the following table:

Task Syntax

List loaded modules Get-Module

List installed modules Get-Module -ListAvailable

Show commands in a module Get-Command -Module "ModuleName"
Load a specific module Import-Module -Name "ModuleName"

One of the improved features with PowerShell V3 is that it supports autoloading modules.
You do not need to always explicitly load modules before using the contained cmdlets. Using
the cmdlet in your script is enough to trigger PowerShell to load the module that contains it.

The SQL Server 2012 modules are located in the PowerShell/Modules folder of the
Install directory:

=

.= Program Files (x86) = Microsoft SQL Server = 110 = Tools = PowerShell = Modules ~

r

Include in library « Share with ~ Mew folder

MName “ Date modified Type
, SQLASCMDLETS 10/30/2011 12:47PM File folder
. SQLPS 10/30/2011 12:54PM File folder

The following table shows the list of the SQLPS and SQLASCMDLETS cmdlets of this version:

CommandType Name

ModuleName

Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet

Add-RoleMember
Backup-ASDatabase
Invoke-ASCmd
Invoke-ProcessCube
Invoke-ProcessDimension
Invoke-ProcessPartition
Merge-Partition
New-RestoreFolder
New-RestoreLocation
Remove-RoleMember
Restore-ASDatabase
Add-SglAvailabilityDatabase

Add-SglAvailabilityGroupListenerStaticIp

Backup-SglDatabase
Convert-UrnToPath
Decode-SglName
Disable-SglHADRService
Enable-SglHADRService
Encode-SglName
Invoke-PolicyEvaluation
Invoke-Sglcmd
Join-SglAvailabilityGroup
New-SglAvailabilityGroup
New-SglAvailabilityGroupListener
New-SglAvailabilityReplica
New-SglHADREndpoint

SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS

Chapter 1

=]

Getting Started with SQL Server and PowerShell

CommandType Name ModuleName
Cmdlet Remove-SglAvailabilityDatabase SQLPS
Cmdlet Remove-SqglAvailabilityGroup SQLPS
Cmdlet Remove-SglAvailabilityReplica SQLPS
Cmdlet Restore-SglDatabase SQLPS
Cmdlet Resume-SqglAvailabilityDatabase SQLPS
Cmdlet Set-SglAvailabilityGroup SQLPS
Cmdlet Set-SglAvailabilityGroupListener SQLPS
Cmdlet Set-SglAvailabilityReplica SQLPS
Cmdlet Set-SglHADREndpoint SQLPS
Cmdlet Suspend-SglAvailabilityDatabase SQLPS
Cmdlet Switch-SglAvailabilityGroup SQLPS
Cmdlet Test-SglAvailabilityGroup SQLPS
Cmdlet Test-SglAvailabilityReplica SQLPS
Test-SglDatabaseReplicaState SQLPS

To learn more about these cmdlets, use the Get -Help cmdlet. For example:

Get-Help "Invoke-Sglcmd"

Get-Help "Invoke-Sglcmd" -Detailed
Get-Help "Invoke-Sglcmd" -Examples
Get-Help "Invoke-Sglcmd" -Full

You can also check out the MSDN article on SQL Server database engine cmdlets:
http://msdn.microsoft.com/en-us/library/cc281847.aspx
When you load the SQLPS module, several assemblies are loaded into your host.

To get a list of SQL Server-related assemblies loaded with the SQL.PS module, use the
following script, which will work in both PowerShell V2 and V3:

Import-Module SQLPS -DisableNameChecking

[appdomain] : : CurrentDomain.GetAssemblies () |
Where {$.FullName -match "SglServer" } |
Select FullName

If you want to run on a strictly V3 environment, you can take advantage of the simplified syntax:

Import-Module SQLPS -DisableNameChecking

[appdomain] : : CurrentDomain.GetAssemblies () |
Where FullName -match "SglServer" |
Select FullName

=]

http://msdn.microsoft.com/en-us/library/cc281847.aspx
http://msdn.microsoft.com/en-us/library/cc281847.aspx

This will show you all the loaded assemblies, including their public key tokens:

Chapter 1

FullName

sqlServer.

Mjcrosoft.

I i

Management.

al, Publiq

More information on running PowerShell scripts

Microsoft.5qlServer.Smo, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845d¢
Microsoft.5qlServer.Dmf, Version=11.0.0.0, Culture=neutral, PublicKeyToken=83845dd
Microsoft.sqlServer. SqglWmiManagement, Version=11.0.0.0, Culture=neutral, PublicKey
Microsoft.5glsServer.ConnectionInfo, Version=11.0.0.0, Culture=neutral, PublicKeyTs
Microsoft.5qlServer. SmoExtended, VWersion=11.0.0.0, Culture=neutral, PublicKeyTokef
Microsoft.5qlServer.Management. RegisteredServers, Version=11.0.0.0, Culture=neutr3
Microsoft.5glsServer.Management. 5dk. 5fc, Version=11.0.0.0, Culture=neutral, Publick
Microsoft.sqlServer. SglEnum, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89%
Microsoft.5qlServer.RegSvrEnum, Wersion=11.0.0.0, Culture=neutral, PublicKeyToken
Microsoft.5qlServer.WmiEnum, Version=11.0.0.0, Culture=neutral, PublicKeyToken=8%4
Microsoft.sqlServer. ServiceBrokerEnum, Version=11.0.0.0, Culture=neutral, Publicks
Microsoft.5qlServer.Management.Collector, Version=11.0.0.0, Culture=neutral, Publ®
Microsoft.5qlServer.Management. CollectorEnum, Version=11.0.0.0, Culture=neutral,
Microsoft.sqlServer.Management. Utility, Version=11.0.0.0, Culture=neutral, Publick
Microsoft.5qlServer.Management. Uti1ityEnum, Version=11l.0.0.0, Culture=neutral,
Microsoft. 5qlServer.Management. HadrDMF, Version=11.0.0.0, Culture=neutral, Publicki
Microsoft.5qlServer.Management.P55napins, Version=11.0.0.0, Culture=neutral, Publj
e=neutral,

By default, PowerShell is running in restricted mode, in other words, it does not run scripts. To
run our scripts from the book, we will set the execution policy to RemoteSigned as follows:

Set-ExecutionPolicy RemoteSigned

See the Execution policy section in Appendix B, PowerShell Primer,
e for further explanation of different execution policies.

If you save your PowerShell code in a file, you need to ensure it has a . ps1 extension otherwise
PowerShell will not run it. Ideally the filename you give your script does not have spaces. You can
run this script from the PowerShell console simply by calling the name. For example if you have a
script called myscript.psl located in the C:\ directory, this is how you would invoke it:

PS C:\> .\myscript.psl

If the file or path to the file has spaces, then you will need to enclose the full path and file

name in single or double quotes, and use the call (&) operator:

PS C:\>&'.\my script.psl'

If you want to retain the variables and functions included in the script, in memory, thus making
them available globally in your session, then you will need to dot source the script. To dot source

is literally to prefix the filename, or the path to the file, with a dot and a space:

PS C:\> . .\myscript.psl
PS C:\> . '.\my script.psl'

e

Getting Started with SQL Server and PowerShell

More information on mixed assembly error

You may encounter an error when running some commands that are built using older .NET
versions. Interestingly, you may see this while running your script in the PowerShell ISE, but
not necessarily in the shell.

Invoke-Sglcmd: Mixed mode assembly is built against version 'V2.0.50727'
of the runtime and cannot be loaded in the 4.0 runtime without additional
configuration information.

A few steps are required to solve this issue:

1.
2.

Open Windows Explorer.

Identify the Windows PowerShell ISE install folder path. You can find this out by going
to Start | All Programs | Accessories | Windows | PowerShell, and then right-
clicking on the Windows PowerShell ISE menu item and choosing Properties.

For the 32-bit ISE, this is the default path:
$windir%\sysWOW64\WindowsPowerShell\vl.0\PowerShell ISE.exe

For the 64-bit ISE, this is the default path:
$windir%\system32\WindowsPowerShell\vl.0\PowerShell ISE.exe

Go to the PowerShell ISE Install folder.
Create an empty file called powershell ise.exe.config.
Add the following snippet to the content and save the file:

<?xml version="1.0" encoding="utf-8" ?>
<configurations>

<startup uselegacyV2RuntimeActivationPolicy="true">
<supportedRuntime version="v4.0" />

</startup>

<runtime>

<generatePublisherEvidence enabled="false" />
</runtime>

</configurations>

Reopen PowerShell ISE and retry the command that failed.

=]

Chapter 1

Creating a SQL Server instance object

Most of what you will need to do in SQL Server will require a connection to an instance.

Getting ready

Open up your PowerShell console, the PowerShell ISE, or your favorite PowerShell editor.

You will need to note what your instance name is. If you have a default instance, you can
use your machine name. If you have a named instance, the format will be <machine
names>\<instance names.

How to do it...

If you are connecting to your instance using Windows authentication, and using your current
Windows login, follow these steps:

1.

Import the SQL.PS module:

#import SQLPS module
Import-Module SQLPS -DisableNameChecking

Store your instance name in a variable as follows:

#create a variable for your instance name
$instanceName = "KERRIGAN"

If you are connecting to your instance using Windows authentication using the
account you are logged in as:

#create your server instance
$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

If you are connecting using SQL Authentication, you will need to know the username
and password that you will use to authenticate. In this case, you will need to add
the following code, which will set the connection to mixed mode and prompt for the
username and password:

#set connection to mixed mode
$server.ConnectionContext.set LoginSecure ($false)

s

Getting Started with SQL Server and PowerShell

#set the login name

#of course we don't want to hardcode credentials here
#so we will prompt the user

#note password is passed as a SecureString type
Scredentials = Get-Credential

#remove leading backslash in username

$login = $credentials.UserName -replace("\\", "")
$server.ConnectionContext.set Login($login)

$server.ConnectionContext.set SecurePassword($Scredentials.
Password)

#check connection string
$server.ConnectionContext.ConnectionString

Write-Verbose "Connected to $($Sserver.Name)"

Write-Verbose "Logged in as $($server.ConnectionContext.
TrueLogin) "

Before you can access or manipulate SQL Server programmatically, you will often need to
create references to its objects. At the most basic is the server.

The server instance uses the type Microsoft.SglServer.Management .Smo.Server
By default, connections to the server are made using trusted connections, meaning it uses
the Windows account you're currently using when you log into the server. So all it needs is

the instance name in its argument list:

#icreate your server instance

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

If, however, you need to connect using a SQL login, you will need to set the
ConnectionContext .LoginSecure property of the SMO Server class setting to false:

#set connection to mixed mode
$server.ConnectionContext.set LoginSecure ($false)

You will also need to explicitly set the username and the password. The best way to
accomplish this is to prompt the user for the credentials.

#prompt
Scredentials = Get-Credential

NED

Chapter 1

The credential window will capture the login and password. The Get -Credential cmdlet
returns the username with a leading backslash if the domain is not specified. In this case, we
want to remove this leading backslash.

#remove leading backslash in username
$login = Scredentials.UserName -replace("\\","")

Once we have the login, we can pass it to the set Login method. The password is already a
SecureString type, which is what the set _SecurePassword expects, so we can readily
pass this to the method:

$server.ConnectionContext.set Login($login)
$server.ConnectionContext.set SecurePassword($credentials.Password)

Should you want to hardcode the username and just prompt for the password, you can also
do this:

$login="belle"

#prompt
Scredentials = Get-Credential -Credential $login

In the script, you will also notice we are using Write-Verbose instead of Write-Host to
display our results. This is because we want to be able to control the output without needing
to always go back to our script and remove all the Write-Host commands.

By default, the script will not display any output, that is, the $vVerbosePreference special
variable is set to SilentlyContinue. If you want to run the script in verbose mode, you
simply need to add this line in the beginning of your script:

SVerbosePreference = "Continue"
When you are done, you just need to revert the value to SilentlyContinue:

SVerbosePreference = "SilentlyContinue"

» The Loading SMO assemblies recipe
» The Creating SQL Server instance using SMO recipe

Es

Getting Started with SQL Server and PowerShell

Exploring SMO server objects

SQL Management Objects (SMO) comes with a hierarchy of objects that are accessible
programmatically. For example, when we create an SMO server variable, we can then access
databases, logins, and database-level triggers. Once we get a handle of individual databases,
we can then traverse the tables, stored procedures, and views that it contains. Since many
tasks involve SMO objects, you will be at an advantage if you know how to discover and
navigate these objects.

Getting ready

Open up your PowerShell console, the PowerShell ISE, or your favorite PowerShell editor.

You will also need to note what your instance name is. If you have a default instance, you
can use your machine name. If you have a named instance, the format will be <machine
names\<instance name>

How to do it...

In this recipe, we will start exploring the hierarchy of objects with SMO.

1. Import the SQL.PS module as follows:
Import-Module SQLPS -DisableNameChecking

2. Create a server instance as follows:

SinstanceName = "KERRIGAN"

$server = New-Object ~
-TypeName Microsoft.SglServer.Management.Smo.Server ~
-ArgumentList $instanceName

3. Get the SMO objects directly accessible from the $server object:
$server |
Get-Member -MemberType "Property" |
Where Definition -like "*Smo*"

4. Now let's check SMO objects under databases. Execute the following line:

$server.Databases |
Get-Member -MemberType "Property" |
Where Definition -like "*Smo*"

Chapter 1

5. To check out the tables, you can type and execute:

$server.Databases ["AdventureWorks2008R2"] .Tables |
Get-Member -MemberType "Property" |
Where Definition -like "*Smo*"

SMO contains a hierarchy of objects. At the very top there is a server object, which in turn
contains objects such as Databases, Configuration, SglMail, LoginCollection,
and the like. These objects in turn contain other objects, for example, Databases is a
collection that contains Database objects, and a Database in turn, contains Tables
and so on.

See also

» The Loading SMO assemblies recipe
» The Creating a SQL Server instance using SMO recipe
» You can also check out the SMO object model diagram from MSDN:

http://msdn.microsoft.com/en-us/library/msl162209 (SQL.110) .aspx

s

http://msdn.microsoft.com/en-us/library/ms162209(SQL.110).aspx
http://msdn.microsoft.com/en-us/library/ms162209(SQL.110).aspx

SQL Server and

PowerShell Basic Tasks

In this chapter, we will cover:

>

Listing SQL Server instances

Discovering SQL Server services
Starting/stopping SQL Server services
Listing SQL Server configuration settings
Changing SQL Server instance configurations
Searching for database objects

Creating a database

Altering database properties

Dropping a database

Changing a database owner

Creating a table

Creating a view

Creating a stored procedure

Creating a trigger

Creating an index

Executing a query / SQL script

Performing bulk export using Invoke-Sqglcmd
Performing bulk export using bcp
Performing bulk import using BULK INSERT

Performing bulk import using bcp

SQL Server and PowerShell Basic Tasks

Introduction

This chapter demonstrates scripts and snippets of code that accomplish some basic SQL
Server tasks, using PowerShell. We will start with simple tasks, such as listing SQL Server
instances and creating objects such as tables, indexes, stored procedures, and functions,
to get you comfortable with working with SQL Server programmatically.

You will find that many of the recipes can be accomplished using PowerShell and SQL
Management Objects (SMO). SMO is a library that exposes SQL Server classes, which
allows for programmatic manipulation and automation of many database tasks. For some
recipes, we will also explore alternative ways of accomplishing the same tasks, using
different native PowerShell cmdlets.

SMO is explained in more detail in Chapter 1, Getting Started
i with SQL Server and PowerShell.

Even though we are exploring how to create some common database objects using
PowerShell, | would like to note that PowerShell is not always the best tool for the task.
There will be tasks that are best left accomplished using T-SQL. Even so, it is still good
to know what is possible with PowerShell and how to do it, so that you know you have
alternatives depending on your requirements or situation.

Development environment

The development environment used in the recipes has the following configurations:

Component Syntax

Domain QUERYWORKS

Machine name KERRIGAN

Instances KERRIGAN or (local) or localhost
SQLO1

Databases AdventureWorks2008R2

Domain accounts QUERYWORKS\aterra
QUERYWORKS\ jraynor
QUERYWORKS\mhorner

Administrator

To simplify the exercises, run the PowerShell scripts as an administrator in your box. In addition,
ensure this account has full access to the SQL Server instance on which you are working.

NEQ

Chapter 2

PowerShell ISE

We will be using the PowerShell ISE for all the scripts in this task. These are some things you
need to remember.

The Script Pane is where you will be typing in your PowerShell code. The Output Pane is
where you will see the results.

The Command Pane is where you can type ad hoc commands, which get executed as soon
as you press Enter.

For our recipes, we will be using the Script Pane to write and execute our scripts. Depending
on the task, you may need to do one of the following:

» Click on the Run Script icon (green arrow) to run all code in the script

» Click on the Run Selection icon right beside it to run only highlighted code

E] Administrator: Windows PowerShell ISE =10l x|

File Edit View Debug Add-ons Help

D& wa» 9| * | 8 |EloDg
|-Unljtled2‘psl* x | @

1 Get-Process Run Selection
2 Get-Process *50QL=

Execute selection only

Script Pane Run Script:
Execute all code

Qutput Pane

PS SQLSERVER:\> ®
.

Command Pane

Ln2 Coll ‘ —J— 100%

Eis

SQL Server and PowerShell Basic Tasks

Running scripts

If you prefer running the script from the PowerShell console rather than running the
commands from the ISE, you can follow these steps:

6.
7.

10.

Save the file with a . ps1 extension.

Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell.

We want to be able to run locally created scripts. To do this, we need to
change the ExecutionPolicy t0 RemoteSigned

Set ExecutionPolicy to RemoteSigned.

See the Execution Policy section of the Running PowerShell scripts

recipe in Appendix B, PowerShell Primer, for further explanation of

different execution policies.

You can pick from the following options:

Q

Change directory to where your script is stored and invoke your script
in this way:

PS C:\>.\SampleScript.psl paraml param2
Use the full qualified path to run the .ps1 file:

PS C:\>#if your path has no space
PS C:\>C:\MyScripts\SampleScript.psl paraml param2

PS C:\>#if your path has space
PS C:\>& "C:\My Scripts\SampleScript.psl" paraml param2

If you want to retain the functions and variables in your script throughout
your session, you can dot source your file:

PS C:\>. .\SampleScript.psl paraml param2
PS C:\>. "C:\My Scripts\SampleScript.psl" paraml param2

Chapter 2

Listing SQL Server instances

In this recipe, we will list all SQL Server instances in the local network.

Getting ready

Loginto

the server that has your SQL Server development instance, as an administrator.

How to do it...

Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

Let's use the Start-Service cmdlet to start SQLBrowser:
Import-Module SQLPS -DisableNameChecking

#sgl browser must be installed and running
Start-Service "SQLBrowser"

Next, you need to create a ManagedComputer object to get access to instances.
Type the following script and run it:

SinstanceName = "KERRIGAN"

$managedComputer = New-Object 'Microsoft.SglServer.Management.Smo.
Wmi .ManagedComputer' S$instanceName

#list server instances
SmanagedComputer.ServerInstances

Your result should look similar to the one shown in the following screenshot:

Server
Parent
Urn
Name
Proper

S5tate

Server
Parent
Urn
Name
Proper

State

UserData

UserData

Protocols : {Np, 5m, Tcp}
: Microsoft. 5ql5erver.Management. Smo. Wmi.ManagedComputer
: ManagedComputer [@Name="KERRIGAN'] /ServerInstance [@Name="M550L5ERVER"]
: MSSQLSERVER
ties 1
: Existing
Protocols : {Np, 5m, Tcp}
: Microsoft. 5qlServer.Management. Smo. Wmi.ManagedComputer
: ManagedComputer [@Name="KERRIGAN'] /ServerInstance [@Name="50QL01"]

: 5QLOL
ties 1

: Existing

Note that $SmanagedComputer.ServerInstances gives you not only instance
names, but also additional properties such as ServerProtocols, Urn, State,
and so on.

s

SQL Server and PowerShell Basic Tasks

4. Confirm that these are the same instances you see in Management Studio. Open up

Management Studio.

5. Go to Connect | Database Engine.

In the Server Name drop-down, click on Browse for More.

Select the Network Servers tab, and check the instances listed. Your screen should

look similar to this:

e
& Browse for Servers

"Local Servers Metwork Servers |

Select a SQL Server instance in the networlk for your connection:

_ Databaze Engine
-5 KERRIGAN (11.0)

e |5 KERRIGAN'.SQLOT

1.0

x|

All services in a Windows operating system are exposed and accessible using Windows
Management Instrumentation (WMI). WMI is Microsoft's framework for listing, setting,
and configuring any Microsoft-related resource. This framework follows Web-based
Enterprise Management (WBEM). Distributed Management Task Force, Inc. defines
WBEM as follows (http://www.dmtf.org/standards/wbem):

a set of management and internet standard technologies developed to unify the
management of distributed computing environments. WBEM provides the ability
for the industry to deliver a well-integrated set of standard-based management
tools, facilitating the exchange of data across otherwise disparate technologies

and platforms.

In order to access SQL Server WMI-related objects, you can create a
WMI ManagedComputer instance:

SmanagedComputer
ManagedComputer'

= New-Object
$instanceName

'Microsoft.SglServer.Management .Smo.Wmi.

The ManagedComputer object has access to a ServerInstance property, which in
turn lists all available instances in the local network. These instances, however, are only
identifiable if the SQL Server Browser service is running.

=)

Chapter 2

SQL Server Browser is a Windows service that can provide information on installed instances
in a box. You need to start this service if you want to list the SQL Server-related services.

An alternative to using the ManagedComputer object is using the System.Data.Sqgl.
SQLSourceEnumerator class to list all the SQL Server instances in the local network, thus:

[System.Data.Sqgl.SglDataSourceEnumerator] : : Instance.GetDataSources () |
Select ServerName, InstanceName, Version |
Format-Table -AutoSize

When you execute this, your result should look similar to the following screenshot:

ServerMame InstanceName Version

KERRIGAN 11.0.1440.159
KERRIGAN 5QL01 11.0.1440.159

Yet another way to get a handle to the SQL Server WMI object is by using the Get -WmiObject
cmdlet. This will not, however, expose exactly the same properties exposed by the Microsoft.
SglServer.Management . Smo.Wmi .ManagedComputer object.

To do this, you will need to discover first what namespace is available in your environment, thus:

Shostname = "KERRIGAN"

$namespace = Get-WMIObject -ComputerName S$hostName -NameSpace root)\
Microsoft\SQLServer -Class " NAMESPACE" |

Where Name -Like "ComputerManagement*"

. If you are using PowerShell V2, you will have to change the Where cmdlet
usage to use the curly braces ({ }) and the $_ variable, thus:
A
Where {$_ .Name -Like "ComputerManagement=*" }

For SQL Server 2012, this value is:
ROOT\Microsoft\SQLServer\ComputerManagementll

Once you have the namespace, you can use this value with Get -WmiObject to retrieve the
instances. One property we can use to filter is SqlServiceType.

http://msdn.microsoft.com/en-us/library/ms179591.aspx

SQL Server and PowerShell Basic Tasks

According to MSDN (http://msdn.microsoft.com/en-us/library/msl179591.aspx),
the following are the values of SglServiceType:

SqlServiceType Description

SQL Server service

SQL Server Agent service
Full-text Search Engine service
Integration Services service
Analysis Services service
Reporting Services service

<N o0 Uk W N

SQL Server Browser service

Thus, to retrieve the SQL Server instances, you need to filter for SQL Server service, or
SQLServiceType = 1.

Get-WmiObject -ComputerName Shostname
-Namespace "$ (Snamespace. NAMESPACE) \$ (S$Snamespace.Name) "
-Class SglService |

Where SQLServiceType -eq 1 |
Select ServiceName, DisplayName, SQLServiceType |
Format-Table -AutoSize

If you are using PowerShell V2, you will have to change the Where
% cmdlet usage to use the curly braces ({ }) and the $_ variable:

o
Where {$_ .SQLServiceType -Like -eqg 1 }

Your result should look similar to the following screenshot:

ServiceName DisplayName SQLServiceType
MSSQL$S0L01 SQL Server (SQLO1) 1
MSSQLSERVER SQL Server (MSSQLSERVER) 1

=

http://msdn.microsoft.com/en-us/library/ms179591.aspx

Chapter 2

Discovering SQL Server services

In this recipe, we enumerate all SQL Server services and list their status.

Getting ready

Check which SQL Server services are installed in your instance. Go to Start | Run and type
services.msc. You should see a screen similar to this:

{} Services (Local)

Thread Ordering Server Name = | Description
. SMMP Trap Receives trap messages generated by local or ...

Start the service % Software Protection Enables the download, installation and enforce. ..
“+. Spedal Administration Console Helper Allows administrators to remotely access a com. ..

Description: 5: 5PP Notification Service Provides Software Licensing activation and not. ..

Provides ordered execution for a group . S0L Full-text Filter Daemon Launcher (MSSQLSERVER) Service to launch full-text filtter daemon proces)..

of threads within & specific peried of tme. | .7 SQL Full-text Filter Daemon Launcher (SQLO1) Service to launch full-text filter daemon proced..
4. 50L Server (MSSQLSERVER) Provides storage, processing and controlled ad..
£ 5QL Server (5QLO1) Provides storage, processing and controlled ad..
£ 5QL Server Agent (MSSQLSERVER) Executes jobs, monitors SQL Server, fires alerd...
L4 5QL Server Agent (SQLO1) Executes jobs, monitors SQL Server, fires alerd...
4 S0L Server Analysis Services (MSSQLSERVER) Supplies online analytical processing (OLAF) ary..
£ 5QL Server Browser Provides SQL Server connection information tof..
£ 5QL Server Integration Services 11.0 Provides management support for S5IS packad...
£ 5QL Server Reporting Services (MSSQLSERVER) Manages, executes, renders, schedules and d|..
£ 5QL Server WSS Writer Provides the interface to backup/restore Micro...
“+. SSDP Discovery Discovers networked devices and services that. ..
%+ System Event Notification Service Monitors system events and notifies subscriber. . ;
%+ Tablet PC Input Service Enables Tablet PC pen and ink functionality

How to do it...

Let's assume you are running this script on the server box.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the following code and execute it:
Import-Module SQLPS

#ireplace KERRIGAN with your instance name

$instanceName = "KERRIGAN"

SmanagedComputer = New-Object 'Microsoft.SglServer.Management.Smo.
Wmi.ManagedComputer' S$instanceName

#list services
$managedComputer.Services |

Select Name, Type, Status, DisplayName |
Format-Table -AutoSize

SQL Server and PowerShell Basic Tasks

Your result will look similar to the one shown in the following screenshot:

Name Type Status DisplayName

MsDt=5erverll0 5glserverIntegrationService SQL Server Integration Services 11.0
MS5QLSSQLOL Sglserver SQL Serwver (5QLO1)

MSSOLFDLauncher 9 SQL Full-text Filter Dasmon Launcher (MSSQLSERVER)
MS5QLFDLauncher$5QL01 9 SQL Full-text Filter Daemon Launcher (5QLO1)
MSSQLSERVER SglServer SQL Serwver (MSSQLSERVER)
M55QL5erverOLAPService AnalysisServer SQL Server Analysis Serwvices (MSSQLSERVER)
ReportServer ReportServer SQL Server Reporting Serwvices (MSSQLSERVER)
SQLAgent$5QLOL SqlAgent SQL Server Agent (SQLOL)

SOLBrowser 5q1Browser SQL Serwver Browser

SQLSERVERAGENT SglAgent SQL Server Agent (MSSQLSERVER)

Items listed on your screen will vary depending on the features installed and
running in your instance.

3. Confirm that these are the services that exist in your server. Check your
services window.

Services that are installed on a system can be queried using WMI. Specific services for SQL
Server are exposed through SMO's WMI ManagedComputer object. Some of the exposed
properties include:

» ClientProtocols

» ConnectionSettings

» ServerAliases

» ServerInstances

» Services

There's more...

An alternative way to get SQL Server-related services is by using Get -WMIObject. We
will need to pass in the hostname, as well as SQL Server WMI provider for the Computer
Management namespace. For SQL Server 2012, this value is:

ROOT\Microsoft\SQLServer\ComputerManagementll

The script to retrieve the services is provided in the following code. Note that we are
dynamically composing the WMI namespace here.

ShostName = "KERRIGAN"

$namespace = Get-WMIObject -ComputerName S$hostName -NameSpace root)\
Microsoft\SQLServer -Class " NAMESPACE" |

=

Chapter 2

Where Name -Like "ComputerManagement*"

Get-WmiObject -ComputerName S$hostname -Namespace "$ ($namespace.
NAMESPACE) \$ ($namespace.Name) " -Class SglService |

Select ServiceName

Yet another alternative but less accurate way of listing possible SQL Server-related services is
the following snippet of code:

#alterative - but less accurate
Get-Service *SQL*

It uses the Get-Service cmdlet and filters based on the service name. It is less accurate
because this cmdlet grabs all processes that have SQL in the name but may not necessarily
be SQL Server-related. For example, if you have MySQL installed, that will get picked up as a
process. Conversely, this cmdlet will not pick up SQL Server-related services that do not have
SQL in the name, such as ReportServer.

See also

» The Listing SQL Server instances recipe

Starting/stopping SQL Server services

This recipe describes how to start and/or stop SQL Server services.

Getting ready

Check which SQL services are installed in your machine. Go to Start | Run and type
Services.msc. You should see a screen similar to this:

£}, Services (Local)
Thread Ordering Server Mame = | Description

++ SNMP Trap Receives trap messages generated by local ar ...

Start the service %+, Software Protection Enables the download, installation and enforce. ..
“.. Spedal Administration Console Helper Allows administrators to remotely access a com...

Description: 5., 5PP Notification Service Provides Software Licensing activation and not...
Provides ordered execution for a group . 50L Full-text Filter Daemon Launcher (MSSQLSERVER) Service to launch full-text filter daemon proced] ..
of threads within a specific period of time. | .~ SQL Full-text Filter Daemon Launcher {SQL01) Service to launch ful-text filter daemon proceq..
£, 50L Server (MS5QLSERVER) Provides storage, processing and controlled ag..

501 Server (SQLO1) Provides storage, processing and controlled ad ..

5. 50L Server Agent (MSSQLSERVER) Executes jobs, monitors SQL Server, fires alerd...,

£ 5QL Server Agent (SQLOL) Executes jobs, monitors SQL Server, fires alerd...

£+ 5QL Server Analysis Services (MSSQLSERVER) Supplies online analytical processing {OLAF) ary..

£, 50L Server Browser Provides SQL Server connection infarmation tof..

£ 50L Server Integration Services 11.0 Provides management support for S5IS packad...

% SOL Server Reporting Services (MSSQLSERVER) Manages, executes, renders, schedules and d|..

£ SQL Server VSS Writer Provides the interface to backup/restore Micro. ..

%+ SSDP Discovery Discovers networked devices and services that...

£+ System Event Notification Service Monitors system events and notifies subscriber. .
% Tablet PC Input Service Enables Tablet PC pen and ink functionality

=]

SQL Server and PowerShell Basic Tasks

How to do it...

Let's look at the steps to toggle states for your SQL Server services:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the following code. Note that this code will work in both PowerShell V2 and V3:

SVerbosepreference = "Continue"

services = @ rowser", eportServer
$ 3 (n SQLB n n R p tS n)
ShostName = "KERRIGAN"

$services | ForEach-Object {

$service = Get-Service -Name $
if (Sservice.Status -eqg "Stopped")

{

Write-Verbose "Starting $($Sservice.Name)"
Start-Service -Name S$service.Name

}

else

{

Write-Verbose "Stopping $($service.Name)"
Stop-Service -Name S$service.Name

}

S$VerbosePreference = "SilentlyContinue"

3. Execute and confirm the service status changed accordingly. Go to Start | Run and
type Services.msc.

Thread Ordering Server Name ~ | Description | Status | Startup Type
., Spedal Administration Console Helper Allows adm... Manual
Start the service £ PP Motification Service Provides 5... Manual
5o SOL Full-text Filter Daemon Launcher (MSSQLSERVER) Service tol... Started Manual
Description: 54 5QL Full-text Filter Daemon Launcher (SQLO1) Service tol... Started Manual
Provides ordered execution for a group 54 50L Server (MSSQLSERVER) Provides st... Started Automatic
of threads within a spedfic period of tne. % o) gerver (sqLo 1) Providesst... Started Automatic
54 S0L Server Agent (MSSOQLSERVER) Executes j... Started Automatic
5 S0L Server Agent (SQLO1L) Executes j... Manual
54 5QL Server Analysis Services (MSSQLSERVER) Supplies on... Started Automatic
| £ 5QL Server Browser Provides 5... Automatic I
54 5QL Server Integration Services 11.0 Providesm... Started Automatic
| 045 50L Server Reporting Services (MSSQLSERVER) Manages, ... Automatic |
54, 5QL Server VS5 Writer Provides th... Started Automatic

=)

Chapter 2

For example, in our previous sample, both SQLBrowser and ReportServer were
initially running. Once the script was executed, both services stopped.

In this recipe, we picked two services—SQLBrowser and ReportServer—that we want to
manipulate and saved them into an array:

Sservices = @("SQLBrowser", "ReportServer")

We then pipe the array contents to a Foreach-0Object cmdlet, so we can determine what
action to perform for each service. For our purposes, if the service is stopped, we want to
start it. Otherwise, we stop it. Note that this code will work in both PowerShell V2 and V3:

$services | ForEach-Object {
$service = Get-Service -Name $_
if (Sservice.Status -eqg "Stopped")
Write-Verbose "Starting $(Sservice.Name)"
Start-Service -Name S$service.Name

}

else
Write-Verbose "Stopping $(Sservice.Name)"
Stop-Service -Name S$service.Name

}

You may also want to determine dependent services, or services that rely on a particular
service. You may want to consider synchronizing the starting/stopping of these services with
the main service they depend on.

To identify dependent services, you can use the DependentServices property of the
System.ServiceProcess.ServiceController class:

$services | ForEach-Object {
Sservice = Get-Service -Name $_
Write-Verbose "Services Dependent on $($Sservice.Name)"
$service.DependentServices | Select Name

@1

SQL Server and PowerShell Basic Tasks

The following list shows the properties and methods of the System.ServiceProcess.
ServiceController class, which is generated from the Get -Service cmdlet:

Name MemberType
Name AliasProperty
ReguiredServices AliasProperty
Disposed Event
Close Method
Continue Method
Create0bjRef Method
Dispose Method
Equals Method
ExecuteCommand Method
GetHashCode Method
GetLifetimeService Method
GetType Method
InitializelifetimeService Method
Pause Method
Refresh Method
Start Method
Stop Method
WaitForStatus Method
CanPauseAndContinue Property
CanShutdown Property
CanStop Property
Container Property
DependentServices Property
DisplayName Property
MachineName Property
ServiceHandle Property
ServiceName Property
ServicesDependedOn Property
ServiceType Property
Site Property
Status Property
ToString ScriptMethod

An alternative way of working with SQL Server services is by using the Microsoft.
SglServer.Management . Smo.Wmi .ManagedComputer class. Note that the following
code will work in both PowerShell V2 and V3:

Import-Module SQLPS -DisableNameChecking

#list services you want to start/stop here
Sservices = @("SQLBrowser", "ReportServer")
$instanceName = "KERRIGAN"

SmanagedComputer = New-Object 'Microsoft.SglServer.Management.Smo.Wni.
ManagedComputer' S$instanceName

#go through each service and toggle the state
$services | ForEach-Object {
$service = $managedComputer.Services[$]
switch ($Sservice.ServiceState)

{

"Running"

=

Write-Verbose "Stopping $ ($service.Name)"

Write-Verbose "Starting $ ($service.Name)"

{
$service.Stop ()
}
"Stopped"
{
Sservice.Start ()
}
}
}

Chapter 2

When using the Smo.Wmi . ManagedComputer object, you can simply use the Stop method
provided with the class and the start method to stop and start the service respectively.

The following list shows the properties and methods available with the Smo . Wmi .

ManagedComputer class:

Name
ManagementStateChange
Alter

ChangePassword
Equals
GetHashCode
GetType
Initialize

Pause

Refresh

Resume
SetSerwviceAccount
Start

Stop

ToString

Validate
AcceptsPause
AcceptsStop
AdvancedProperties
Dependencies
Description
DisplayName
ErrorControl
ExitCode
IsHadrEnabled
Name

Parent

PathName
ProcessId
Properties
ServiceAccount
ServiceState
StartMode
StartupParameters
State
Tvpe
Urn
UserData

ChangeHadrServicesetting

TypeName: Microsoft.5glsServer.Management. Smo. Wmi. Service

MemberType Definition

Event
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property

System. Void Alter ()
System.Void ChangeHadrServicese
System.Void ChangePassword(stri
bool Equals{System.0Object obj)
int GetHashCode()

type GetType()

boal Initialize()

System.Void Pause()

System. Void Refresh()
System.Void Resume()

System. Void SetSerwiceAccount(s
System. Void Start()

System. Void Stop()

string ToString()
Microsoft.SglServer.Management.
System. Boolean AcceptsPause {ge
System. Boolean AcceptsStop {get;
Microsoft.SglServer.Management.
System.Collections. Specialized.
System. String Description {get;
System. 5tring DisplayMame {get;}
Microsoft.SglServer.Management.
System. Int32 ExitCode {get;}
System. Boolean IsHadrEnabled {g
System. String MName {get;set;}
Microsoft.SglServer.Management.
System. String PathName {get;}
System. Int32 ProcessId {get;}
Microsoft.SglServer.Management.
System. String SerwviceAccount {g
Microsoft.SglServer.Management.
Microsoft.SglServer.Management.
System. String StartupParameters
Microsoft.SglServer.Management.
Microsoft.SglServer.Management.
Microsoft.SglServer.Management.
System.Object UserData {get;set

@]

SQL Server and PowerShell Basic Tasks

There's more...

To explore available cmdlets that can help manage and maintain services, use the
following command:

Get-Command -Name *Service* -CommandType Cmdlet -ModuleName
PowerShell

This will enumerate all cmdlets that have "Service" in the name:

CommandType Mame

Cmdlet Get-Service

Cmdlet Mew-Service

Cmdlet MNew-WebServiceProxy
Cmdlet Restart-Service
Cmdlet Resume-5Service
Cmdlet Set-Service

Cmdlet Start-Service
Cmdlet Stop-Service

Cmdlet Suspend-Service

All of these cmdlets relate to Windows services, with the exception of New-
WebServiceProxy, which is described in MSDN as a cmdlet that creates a Web service
proxy object that lets you use and manage the Web service in Windows PowerShell.

Here is a brief comparison between these service-oriented cmdlets and the methods available
for the object of Microsoft.SglServer.Management . Smo.Wmi.ManagedComputer
service, as discussed in the recipe:

Service Methods Service-related cmdlets
Start () Start-Service
Stop () Stop-Service
Continue () Resume-Service
Pause () Suspend-Service
Refresh ()

Restart-Service

Note that there isn't necessarily a one-to-one mapping between the methods of the Service
class and the service cmdlets. For example, there is a Restart-Service cmdlet, but there
isn't a Restart method.

SNED

Chapter 2

This should not raise alarm bells, though. Although it may seem that some methods or cmdlets
may be missing, it is important to note that PowerShell is a rich scripting platform and language.
In addition to its own cmdlets, it leverages the whole .NET platform. Whatever you can do in

the .NET platform, you most likely can do using PowerShell. Even if you think something is not
doable when you look at a specific class or object, there is most likely a cmdlet somewhere that
can perform that same task, or vice versa. If you still cannot find your ideal solution, you can
create your own—be it a class, a module, a cmdlet, or a function.

» The Discovering SQL Server services recipe

Listing SQL Server configuration settings

This recipe walks through how to list SQL Server configurable and non-configurable instance
settings using PowerShell.

How to do it...

1. Open the PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.
2. Import the SQLPS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

To explore what members and methods are included in the SMO server, use the
following code snippet in PowerShell V3:

#Explore: get all properties available for a server object
#http://msdn.microsoft.com/en-us/library/ms212724 .aspx
$server | Get-Member | Where MemberType -eq "Property"

In PowerShell V2, you will need to slightly modify your syntax:

$server | Get-Member | Where {$.MemberType -eq "Property"}

i

SQL Server and PowerShell Basic Tasks

#The Information class lists nonconfigrable instance settings,
#like BuildNumber, OSVersion, ProductLevel etc

#Also includes settings specified during install
$server.Information.Properties |

Select Name, Value |

Format-Table -AutoSize

Name Value:
Bui TdNumber 144

Edition Enterprise Evaluation Edition (64-bit)
ErrorLogPath C:“Program Files‘\Microsoft SQL Serwver‘M550QL11.MS5QLSERVER\MSSQLYLog
HasNull5aPassword

IsCaseSensitive False
IsFullTextInstalled True
Language English {(United States)
MasterDELogPath C:\Program Files‘Microsoft SQL Server’M55QL11.MSSOLSERVER\MSSOLDATA
MasterDEPath C:\Program Files‘Microsoft SQL Server'M55QL11.MSSQLSERVER'\MSSOLYDATA
MaxPrecision 38i
NetName KERRIGAMN
05vVersion 6.1 (7601)
Phy=1calMemory 2047
Platform NT x64
Processors 1
Product Microsoft 5QL Serwver
RootDirectory C:\Program Files'Microsoft SQL Serwver‘M55QL11.MSSQLSERVER'\MSSOL
VersionMajor 11,
VersionMinor o]
VersionSstring 11.0.1440.19
Collation SQL_Latinl_General _CP1_CI_AS
EngineEdition 3;
IsClustered False
IsSinglelser False
ProductLevel CcTP
BuildC1rVersionString vd.0.30319
CollationID 8724684388
ComparisonStyle 19660

er Name KERRIGA

3. Next, let's look at the Settings class:

#The Settings lists some instance level configurable settings,
#like LoginMode, BackupDirectory etc
$server.Settings.Properties |

Select Name, Value |

Format-Table -AutoSize

=

Chapter 2

Name Value

AuditLevel Failure
BackupDirectory C:“Program Files‘Microsoft SQL Server‘MS5QL11.MSSQLSERVER\MSS0QLYBackup
DefaultFile

DefaultLog

LoginMode Miwned
MailProfile

NumberOfLogFiles -1
PerfMonMode None
TapelLoadwaitTime -1

4. The UserOptions class lists user-specific options:

#The UserOptions include options that can be set for user
#iconnections, for example

#AnsiPadding, AnsiNulls, NoCount, QuotedIdentifier
$server.UserOptions.Properties |

Select Name, Value |

Format-Table -AutoSize

Name Value
AbortOnArithmeticErrors False
AbortTransactionOnError False
Ansi1NullDefaultoff False
AnsiNullDefaultOn False
AnsiNulls False
AnsiPadding False
AnsiWarnings False
ConcatenateMNulTYieldsNull False
CursorC]lose0nCommit False
DisablebefaultConstraintCheck False
IgnoreArithmeticErrors False
ImplicitTransactions False
NoCount False
NumericRoundabort False
QuotedIdentiftier False

-

SQL Server and PowerShell Basic Tasks

5. The configuration class contains instance-specific settings, similar to what you
will see when you run sp_configure.

#The Configuration class contains instance specific settings,
#like AgentXPs, clr enabled, xp_ cmdshell

#You will normally see this when you run

#the stored procedure sp_ configure

$server.Configuration.Properties |

Select DisplayName, Description, RunValue, ConfigValue |

Format-Table -AutoSize

DisplayMame

recovery interval (min)

allow updates

user connections

locks

open objects

i1l factor (%)

dizallow results from triggers
nested triggers

server trigger recursion
remote access

default language

cross db ownership chaining
max worker threads

network packet size (B)

show advanced options

remote proc trans

2 audit mode

default full-text language
two digit vear cutoff

index create memory (KB)
priority boost

remote login timeout (s)
remote query timeout (s)
cursor threshold

set working set size
=]

Description P

Maximum recovery interval in min
Allow updates to system tables
Number of user connections allow
Number of locks for all users
Number of open database objects
Default fi11 factor percentage
Disallow returning results from
Allow triggers to be invoked wit
Allow recursion Tor server Tewvel
Allow remote access

default language

Allow cross db ownership chainin
Maximum worker threads
Network packet size
show advanced options
Create DTC transaction for remot
c?2 audit mode

default full-text language

two digit vear cutoff

Memory Tor index create sorts
Priarity boost
remote login timeout
remote guery timeout
cursor threshold

set working set size
optio

Most SQL Server settings and configurations are exposed using SMO or WMI, which allows
for these values to be programmatically retrieved.

At the core of accessing configuration details is the SMO Server class. This class exposes
a SQL Server instance's properties, some of which are configurable, while some are not.

To create an SMO Server class, you will need to know your instance name and pass it as
an argument:

#ireplace this with your instance name
"KERRIGAN"

Sserver = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

$instanceName =

=

Chapter 2

The following are the four main properties that store settings/configurations that we looked at
in this recipe:

Server property Description

Information Includes non-configurable instance settings, such
as BuildNumber, Edition, OSVersion, and
ProductLevel

It also includes settings specified during install,
for example Collation, MasterDBPath, and
MasterDBLogPath

Settings Lists some instance-level configurable settings,
such as LoginMode and BackupDirectory

UserOptions Contain options that can be set for user
connections, such as AnsiWarnings,
AnsiNulls, AnsiPadding, and NoCount

Configuration Instance-specific settings, such as AgentXPs,
remote access,clr enabled,and xp_
cmdshell, which you will normally see and set
when you use the sp_configure system stored
procedure

See also

» Check out MSDN for complete documentation on SMO classes:

http://msdn.microsoft.com/en-us/library/ms212724 .aspx

Changing SQL Server instance

configurations

This recipe walks through how to change instance configuration settings using PowerShell.

Getting ready

For this recipe, we will:

» Change FillFactor to 60 percent

» Enable SQL Server Agent

» Set minimum server memory to 500 MB
» Change authentication method to Mixed

s

SQL Server and PowerShell Basic Tasks

How to do it...

Let's change some SQL Server settings using PowerShell:

1.

Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Add the following script and run it:

<#

run value vs config value

config value," is what the setting has been set to (but may or
may not be what SQL Server is actually running now. Some settings
don't go into effect until SQL Server has been restarted, or
until the RECONFIGURE WITH OVERRIDE option has been run, as

appropriate.) And the last column, "run value," is the value of
the setting currently in effect.
#>

#change FillFactor
$server.Configuration.FillFactor.ConfigValue = 60

#tenable SQL Server Agent extended stored procedures
$server.Configuration.AgentXPsEnabled.ConfigValue = 1

#change minimum server memory to 500MB; MB is default
$server.Configuration.MinServerMemory.ConfigValue = 500

$server.Configuration.Alter ()

#confirm changes
$server.Configuration.Properties |
Select DisplayName, ConfigValue |
Format-Table -AutoSize

Chapter 2

#change authentication mode

$server.Settings.LoginMode = [Microsoft.SglServer.Management.Smo.
ServerLoginMode] : :Mixed

Sserver.Alter ()

#confirm changes
$server.settings.LoginMode

4. Confirm the changes.
To confirm fill factor:

1. Go to Management Studio.

2. Connect to your instance.

3. Right-click on your instance and select Properties.
4

Go to Database Settings, and check whether your fill factor value has changed.

E' Server Properties - KERRIGAN
Selecta page L% Seript ~ [Help

% General

1254 Memory
% Processors Defautt index fill factor:

1% Security -
1% Connections I'E'I]' 3
e Database Settings Backup and restore

% Advanced
_ﬁlﬁ Permissions Specify how long SQL Server will wait fo

A side effect of enabling SQL Server Agent extended stored procedures is enabling SQL
Server Agent. To confirm SQL Server Agent has been enabled:

1. Go to Management Studio.
2. Connect to your instance.

7}

SQL Server and PowerShell Basic Tasks

3. Visually check whether SQL Server Agent for the instance you modified is now running.

Ohject Explorer

Comnect~ 3 3 m 7 [#] L5

ERYERRIGAN (SOL Server 11.0.1440 - KERRIGAN\Administrator)
[Databases
1 Security
[Server Objects
3 Replication
i Management
3 Integration Services
ﬁ% SQL Server Agent

To confirm Minimum server memory:

1. Go to Management Studio.
2. Right-click on your instance and select Properties.
3. Go to Memory and check that the value has changed to what you set it to.

E Server Properties - KERRIGAN

.5 Seript + Yy Help

= Memory
[Processors Server memory options
[Securty

28 Connections

[Database Settings
A Advanced

) Minimum server memary {in MB):
[Permissions

|524283[|{|'D 3:

Madmum server memaory (in ME):

2147483647 =

To confirm authentication mode:

1. Go to Management Studio.
2. Connect to your instance.

NED

3. Right-click on your instance and select Properties.

4. Go to Security and check that the instance is now SQL Server and Windows
Authentication mode.

Select a page
A General
_ﬁf‘ Memory
4 Processors

B Security

A4 Connections

_ﬁf‘ Database Settings
2 Advanced

2 Pemissions

E' Server Properties - KERRIGAN
5 Seript + % Help

Server authentication

" Windows Authentication mode

= 5L Server and Windows Authentication mode

Login auditing
i~ MNone

% Failed logins only

™ Successful logins only

™ Both failed and successful logins

Depending on what server properties you need to change, you may need to determine
which of the following classes you may need to access: Settings, UserOptions,

or Configuration.

Chapter 2

Once you have determined which class and property you want to change, you can change the

values and invoke the Alter method:

#to make Configuration changes permanent
$server.Configuration.Alter ()

#to make Settings changes permanent

Sserver.Alter ()

SQL Server and PowerShell Basic Tasks

There's more...

When you run sp_configure, you will see a result that shows both run_value and config_value
as follows:

sp_configureg|
100% = 4
] Results | e Messagesl
name I minimum | miaximum config_value I nun_valus
1 [allow updates 0 1 0 0
2 backup compression default O 1 0 0
3 clr enabled 1] 1 0 0
4 contained database authentication | 0 1 0 0
5 cross db ownership chaining O 1 0 0
& default language 1] 9955 0 0
7 filestream access level 0 2 2 2
g miae text repl size (B) -1 2147483647 | B5536 65536
9 nested triggers 1] 1 1 1
10 | remote access 0 1 3 3

There is often confusion between run_value and config_value. config_value is what value the
setting is set to. run_value is what SQL Server is currently using. Sometimes, a new value may
be set (config_value), but it isn't used by SQL Server until the instance is restarted.

» The Listing SQL Server configuration settings recipe

Searching for database objects

In this recipe, we will search for database objects based on a search string by using PowerShell.

Getting ready

We will use AdventureWorks2008R2, in this exercise, and will look for SQL Server objects
with the word "Product" in their names.

&)

Chapter 2

To get an idea of what are expecting to retrieve, run the following script in SQL Server
Management Studio:

USE AdventureWorks2008R2
GO
SELECT

*
FROM

sys.objects
WHERE

name LIKE '$Product#%'

-- filter table level objects only
AND [type] NOT IN ('C', 'D', 'PK', 'F')
ORDER BY

[typel

This will get you 23 results. Remember this number.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it. Note that the following script will work only with
PowerShell V3, because of the simplified where cmdlet usage. If you want to use
this in PowerShell V2, replace the Where syntax with the V2 variation.

SdatabaseName = "AdventureWorks2008R2"
Sdb = S$server.Databases [$SdatabaseName]

#what keyword are we looking for?
$searchString = "Product"

#create empty array, we will store results here
Sresults = @()

[ei-

SQL Server and PowerShell Basic Tasks

#now we will loop through all database SMO
#iproperties and look of objects that match
#the search string
#note we are explicitly excluding Federations, because
#this throws an error
$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*"
ForEach-Object ({
Stype = $_.Name
$db. $type |
Where Name -Like "*$searchstring*" |
ForEach-Object {
$result = New-Object -Type PSObject -Prop @{
"ObjectType"=$type.Replace ("Microsoft.
SglServer.Management.Smo.", "")
"ObjectName"=$.Name

}

Sresults += S$Sresult

#display results
Sresults

#texport results to csv file
$file = "C:\Temp\SearchResults.csv"
$results | Export-Csv -Path $file -NoTypeInformation

#display file contents
notepad $file

&

Your results will look like this:

ObjectType

Schemas

Tables
Tables
Tables
Tables
Tables
Tables
Tables
Tabhles
Tables
Tables
Tabhles
Tables
Tables
Tabhles
Tables
Tables

Views
Views
V1ews

StoredProcedures

UserDefinedFunctions
UserDefinedFunctions
UserDefinedFunctions

¥XmlSchemaCollections

ObjectName

Production
uspGetwWherelsedProductID
Product

ProductCategory
ProductCostHistory
ProductDescription
ProductDocument
ProductInventory
ProductListPriceHistory
ProductModel
ProductModelIllustration
ProductModelProductDescriptionCulture
ProductPhoto
ProductProductPhoto
ProductReview
ProductSubcategory
Productvendor
Special0fferProduct
ufnGetProductDealerPrice
ufnGetProductListPrice
ufnGetProductStandardCost
vProductAndDeszcription
vProductModelCatalogDescription
vProductModel Instructions
ProductDescriptionSchemaCaollects

Chapter 2

After creating our usual SMO Server object, we create an SMO database handle to our
AdventureWorks2008R2 database.

Sdatabasename = "AdventureWorks2008R2"
$db = sserver.Databases[$databasename]

We also define our search string. Our goal is to get all database objects that have the word

"Product" in their names:

#what keyword are we looking for?

$searchString = "Product"

We also create an empty array, where we can save our search results as records. This will
enable us to display our final results in a tabular fashion when we're done with our iteration.

$results = @()

SQL Server and PowerShell Basic Tasks

We will then go through all the database-related SMO properties and look for objects
that contain the keyword we're looking for. Note that the following script will work only
with PowerShell V3, because of the simplified Wwhere cmdlet usage. If you want to use
this in PowerShell V2, replace the Where syntax with the V2 variation.

#now we will loop through all database SMO
#tproperties and look of objects that match
#the search string
#note we are explicitly excluding Federations, because
#this throws an error
$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*"
ForEach-Object ({
Stype = $_.Name
$db.sStype |
Where Name -Like "+*$searchstring*" |
ForEach-Object {
$result = New-Object -Type PSObject -Prop @f
"ObjectType"=$type.Replace ("Microsoft.SglServer.
Management.Smo.", "")
"ObjectName"=$_.Name

}

Sresults += S$Sresult

}

In our loop, we have one long line that parses and creates our result.
The first part inspects each property and checks whether the name contains our search string.

$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*"
ForEach-Object ({
Stype = $_.Name
$db.sStype |
Where Name -Like "*$searchstring*" |
ForEach-Object {
$result = New-Object -Type PSObject -Prop @f
"ObjectType"=$type.Replace ("Microsoft.SglServer.
Management.Smo.", "")
"ObjectName"=$.Name

=

Chapter 2

Sresults += Sresult

}

Note that we have two conditions that we pass in the outer Where-Object cmdlets (here
simplified to Where usage, which is supported only in PowerShell V3), as follows:

» Where Definition -Like "*Smo*", because we are only looking for SMO
properties

» Where Definition -NotLike "*Federation*", because when you access
$db.Federations, an exception is thrown

The second part builds a new row for the result with two columns: ObjectType and
ObjectName. This new result is of type PSObject. Once constructed, we store this in our
Sresults array. We also strip out the substring Microsoft.SqlServer.Management .
Smo from the resulting object types, for brevity.

$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*"
ForEach-Object ({
Stype = $_.Name
$db. $type |
Where Name -Like "*$searchstring*" |
ForEach-Object {
$result = New-Object -Type PSObject -Prop @{
"ObjectType"=$type.Replace ("Microsoft.SglServer.
Management .Smo.", "")
"ObjectName"=$.Name

}

Sresults += S$Sresult

}

Lastly, we export our results to a CSV file, using the Export -Csv cmdlet, and display
in notepad:

#fexport results to csv file
$file = "C:\Temp\SearchResults.csv"
$results | Export-Csv -Path $file -NoTypeInformation

#display file contents
notepad $file

]

SQL Server and PowerShell Basic Tasks

When you inspect your results, however, you will notice two extra objects that were not captured
in our T-SQL statement in the Getting ready section. If we compare the two approaches, our
PowerShell approach is more complete. In addition to the expected 23 results, PowerShell has
also captured:

» Production—schema object

» ProductDescriptionSchemaCollection—XmlSchemaCollection object

Another way to iterate through the objects is by using the EnumObjects method of the SMO
database variable $db:

$searchString = "Product"

$db.EnumObjects () |

Where Name -Like "*$searchString+*" |
Select DatabaseObjectTypes, Name |
Format-Table -AutoSize

Yes, there is still yet another alternative. This one is longer and less flexible, but it still gets you
what you need. You can look for objects that match the search string by going through the $db
object properties one by one, like this:

#long version is to enumerate explicitly each object type
$db.Tables | Where Name -Like "*$searchstring*"

$db.StoredProcedures | Where Name -Like "*$searchstring*"
$db.Triggers | Where Name -Like "*$searchstring*"
$db.UserDefinedFunctions | Where Name -Like "*$searchstring*"
#etc

This is useful, and will be faster, if you know exactly what type of object you are looking for.

» The Exploring SMO Server objects recipe in Chapter 1

Chapter 2

Creating a database

This recipe walks through creating a database with default properties using PowerShell.

Getting ready

In this example, we are going to create a database called TestDB, and we assume that this
database does not yet exist in your instance.

For your reference, the equivalent T-SQL code for this task is:

CREATE DATABASE TestDB

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

#database TestDB with default settings
#tassumption is that this database does not yet exist
$dbName = "TestDB"

$db = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Database ($server, S$dbName)

Sdb.Create ()

#to confirm, list databases in your instance
$server.Databases |
Select Name, Status, Owner, CreateDate

&7}

SQL Server and PowerShell Basic Tasks

There are two key steps to creating a database using SMO and PowerShell: creating an SMO
Server object and creating an SMO Database object.

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

SdbName = "TestDB"

$db = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Database (S$Sserver, S$dbName)

The SMO Database constructor requires both the SMO Server handle and a database object.
The final action is to call the database object's Create method:

$db.Create ()

Many SMO objects are consistent with the methods. You will see the Create method again in
several recipes in this chapter.

Altering database properties

This recipe shows you how to change database properties, using SMO and PowerShell.

Getting ready

Create a database called TestDB by following the steps in the Creating a database recipe.
Using TestDB, we will:

» Change ANSI NULLS Enabled to False

» Change ANSI PADDING Enabled to False

» Restrict user access to RESTRICTED_USER
» Set the database to Read Only

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

Chapter 2

#ireplace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Add the following script and run

#database
SdbName = "TestDB"

#we are going to assume db exists
Sdb = $server.Databases [$dbName]

#DatabaseOptions

#change ANSI NULLS and ANSI PADDING
$db.DatabaseOptions.AnsiNullsEnabled = $false
$db.DatabaseOptions.AnsiPaddingEnabled = $false

#Change database access
#DatabaseUserAccess enum values: multiple, restricted, single

$db.DatabaseOptions.UserAccess = [Microsoft.SglServer.Management.
Smo.DatabaseUserAccess] : :Restricted

$db.Alter ()

#some options are not available through the
#DatabaseOptions property
#so we will need to access the database object directly

#ichange compatiblity level to SQL Server 2005
#available CompatibilityLevel values are from

#Version 6.5 ('Versioné65') all the way to SQL

#Server 2012 ('VersionllO0')

#however Version80 is not a valid compatibility option
#for SQL Server 2012

$db.AutoUpdateStatisticsEnabled = Strue

$db.CompatibilityLevel = [Microsoft.SglServer.Management.Smo.
CompatibilityLevel] : :Version90
$db.Alter ()

#set to readonly
$db.DatabaseOptions.ReadOnly = S$Strue
$db.Alter ()

[}

SQL Server and PowerShell Basic Tasks
4. Confirm the changes.

To start confirming;:
1. Go to Management Studio.
2. Connect to your instance.

You will notice right away in Object Explorer that your database is grayed out and
that its status has changed to (Restricted User / Read-Only).

= |4 KERRIGAN (SQL Server 11.0.1440 - KERRIGAN\Administrator)
= [Databases
1 System Databases
|1 Database Snapshots
| J AdventureWorks2008R2
L) Test
| J TestDB (Restricted User / Read-Only)

To confirm ANSI NULLS, ANSI PADDING, and Compatibility Level:

3. Right-click on the TestDB database and select Properties.

4. Go to the Options tab, and check whether the respective options have
been changed:

Collation: SGL_Latin1_General_CP1_CI_AS |
Recovery model: IFuII j
| Compatibility level: SQL Server 2005 (30) ;l

Containment type: Mone ﬂ
(Other options:
=4l |=
E Miscellanecus -

Allow Snapshot Isalation True

ANSI NULL Default False

ANSI NULLS Enabled False

ANSI Padding Enabled False

ANSI Wamings Enabled False

Arthmetic Abort Enabled False

Concatenate Mull ields Mull False

Date Comelation Optimization Enabiad False

Is Read Committed Snapshot On False

Chapter 2

To alter database properties, you will need to create an SMO handle to your database:

#we are going to assume db exists
Ssdb = $server.Databases [$dbName]

After this, you will need to investigate which of the properties contains the setting you want to
change. For example, ANSI NULLS, ANSI WARNINGS, database access restriction options, and
Read Only are available through the DatabaseOptions property of your database object:

#DatabaseOptions

#change ANSI NULLS and ANSI PADDING
$db.DatabaseOptions.AnsiNullsEnabled = $false
$db.DatabaseOptions.AnsiPaddingEnabled = $false

#Change database access
#DatabaseUserAccess enum values: multiple, restricted, single

$db.DatabaseOptions.UserAccess = [Microsoft.SglServer.Management.Smo.
DatabaseUserAccess] : :Restricted

#set to readonly
$db.DatabaseOptions.ReadOnly = S$Strue

AutoUpdateStatisticsEnabled and CompatibilityLevel are their own properties,
directly accessible from the $db object:

$db.AutoUpdateStatisticsEnabled = Strue

$db.CompatibilityLevel = [Microsoft.SglServer.Management.Smo.
CompatibilityLevel] : :Version90

Note that for SQL Server 2012, the earliest version you can set the compatibility level to is
SQL Server 2005 (Version 90).

Once you've set the new values, you can persist the changes by invoking the Alter method
of your database object:

$db.Alter ()

Finding exactly which property the settings you are looking for reside in is half the battle, so it's
a great idea to familiarize yourself with the properties of the object you are changing. Technet
and MSDN are great resources, as are books and numerous articles and blog posts. However,
remember there is help at your fingertips. Remember that the Get -Member cmdlet is your
friend. You can invoke the Get -Member cmdlet as follows:

$db | Get-Member

SQL Server and PowerShell Basic Tasks

See also

» The Changing SQL Server instance configurations recipe

Dropping a database

This recipe shows how you can drop a database, using PowerShell and SMO.

Getting ready

This task assumes you have created a database called TestDB. If you haven't, create one by
following the steps in the Creating a database recipe.

How to do it...

The following are the steps to drop your TestDB database:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

SdbName = "TestDB"

#ineed to check if database exists, and if it does, drop it
Ssdb = $server.Databases [$SdbName]
if ($db)
{
#we will use KillDatabase instead of Drop
#Kill database will drop active connections before
#dropping the database
Sserver.KillDatabase ($dbName)

Chapter 2

To drop an SMO server or database object, you can simply invoke the Drop method. However,
if you have ever tried dropping a database before, you might have already experienced being
blocked by active connections to that database. For this reason, we chose the KillDatabase
method, which will kill active connections before dropping the database. This option is also
available in Management Studio when you drop a database from Object Explorer. When you
right-click on a database, the Delete Object window will appear. At the bottom of the window
you will find a checkbox called Close existing connections, which will do the job.

27 Delete Object

8 Senpt | - | L Help

Object to be deleted
Object Name I Object Type I Owner I Statu
: TestDB Database KER...

- P e »
Wﬁﬁgﬁuemes B T T e e

Progress

Ready ¥ Delete backup and restare history information for databases
| W' Close existing connections |

Changing a database owner

This recipe shows how to programmatically change a SQL Server database owner.

Getting ready

This task assumes you have created a database called TestDB and that a Windows account
QUERYWORKS\aterra. QUERYWORKS\aterra has been created in your test VM.

[See Appendix D, Creating a SQL Server VM.]

If you don't already have one, create a TestDB database by following the steps the Creating
a database recipe.

(75}

SQL Server and PowerShell Basic Tasks

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

#create database handle
SdbName = "TestDB"
Sdb = $server.Databases [$dbName]

#display current owner
$db.Owner

#change owner

#SetOwner requires two parameters:
#loginName and overrideIfAlreadyUser
$db.SetOwner ("QUERYWORKS\aterra", $true)
#refresh db

sdb.Refresh ()

#icheck Owner value
$db.Owner

4. Do a visual check:

Open Management Studio.
Locate the AdventureWorks2008R2 database.
Right-click and go to Properties.

N

Select Options.

7

Chapter 2

- Database Properties - TestDB

1 General
Il Files
#A Filegroups Database name: ITestDE
2 Options Owner. [QUERYWORKS'atera
2 Change Tracking
|2 Permissions ¥ Use fulltext indexing
“4 Extended Properties

Changing the database owner is a short and straightforward task in PowerShell. First, you
need to create a database handle.

The only other action required is invoking the SetOwner method of the Microsoft.
SglServer.Management . Smo.Database class, which requires two parameters:

» LoginName

» OverrideIfAlreadyUser
The OverrideIfAlreadyUser option can be set to either true or false. If setto true,
it means that the currently logged-in user already exists as a user in the target database, and

that user is dropped and re-added as owner. If set to false and the logged-in user is already
mapped to that database, the SetOwner method will produce an error.

» The Altering database properties recipe

Creating a table

This recipe shows how to create a table using PowerShell and SMO.

Getting ready

We will use the AdventureWorks2008R2 database to create a table named Student,
which has five columns. To give you a better idea of what we are trying to achieve, the
equivalent T-SQL script needed to create this table is as follows:

USE AdventureWorks2008R2
GO
CREATE TABLE [dbo] . [Student] (

SQL Server and PowerShell Basic Tasks

[StudentID] [INT] IDENTITY(1,1) NOT NULL,
[FName] [VARCHAR] (50) NULL,
[LName] [VARCHAR] (50) NOT NULL,
[DateOfBirth] [DATETIME] NULL,
[Age] AS (DATEPART (YEAR,GETDATE ()) -DATEPART (YEAR, [DateOfBirth])),
CONSTRAINT [PK Student StudentID] PRIMARY KEY CLUSTERED
(
[StudentID] ASC

GO

How to do it...

Let's create the Student table using PowerShell:

1. Open the PowerShell console by going to Start | Accessories | Windows PowerShell
| Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Next, add code to set up the database and table names and to drop the table if it
already does exist:
SdbName = "AdventureWorks2008R2"
StableName = "Student"
Sdb = $server.Databases [$dbName]
Stable = $db.Tables[StableName]

#if table exists drop
if (Stable)

{

Stable.Drop ()
}
4. Add the following script to create the table, and run it:

#table class on MSDN
#http://msdn.microsoft.com/en-us/library/ms220470.aspx

7@

Chapter 2

Stable = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Table -ArgumentList db, StableName

#column class on MSDN

#http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management . smo.column.aspx

#column 1

ScollName = "StudentID"
Stype = [Microsoft.SglServer.Management.SMO.DataTypel ::Int;
$coll = New-Object -TypeName Microsoft.SglServer.Management.SMO.

Column -ArgumentList S$table, S$collName, Stype
Scoll.Nullable = S$false

$coll.Identity = S$true

$coll.IdentitySeed = 1
$coll.IdentityIncrement = 1
Stable.Columns.Add (Scoll)

#column 2 - nullable

S$col2Name = "FName"

Stype = [Microsoft.SglServer.Management.SMO.DataType] : :VarChar (50)
$col2 = New-Object -TypeName Microsoft.SglServer.Management.SMO.

Column -ArgumentList $table, $col2Name, Stype
Scol2.Nullable = Strue
Stable.Columns.Add (Scol2)

#column 3 - not nullable, with default value

$col3Name = "LName"

Stype = [Microsoft.SglServer.Management.SMO.DataType] : :VarChar (50)
$col3 = New-Object -TypeName Microsoft.SglServer.Management.SMO.

Column -ArgumentList $table, $col3Name, Stype
Scol3.Nullable = S$false
$col3.AddDefaultConstraint ("DF_Student LName") .Text = "'Doe'"

Stable.Columns.Add (Scol3)

#column 4 - nullable, with default value

Scol4Name = "DateOfBirth"

Stype = [Microsoft.SglServer.Management.SMO.DataType] : :DateTime;
$cold = New-Object -TypeName Microsoft.SglServer.Management.SMO.

Column -ArgumentList $table, $col4Name, Stype
Scol4 .Nullable = Strue

$col4 .AddDefaultConstraint ("DF Student DateOfBirth") .Text =
"'1800-00-00""

Stable.Columns.Add (Scol4)

(77}

SQL Server and PowerShell Basic Tasks

#column 5

$col5Name = "Age"
Stype = [Microsoft.SglServer.Management.SMO.DataTypel ::Int;
$col5 = New-Object -TypeName Microsoft.SglServer.Management.SMO.

Column -ArgumentList $table, $colS5Name, Stype
Scol5.Nullable = S$false

$col5.Computed = S$true

$col5.ComputedText = "YEAR (GETDATE()) - YEAR(DateOfBirth)";
Stable.Columns.Add (Scolb)

Stable.Create ()

5. Make studentID the primary key, as follows:

HHHHHAFHHAFH A HHAFH S H A HH A HHA S H A HH A H

#make StudentID a clustered PK
HHHHHAFHHAFH S HHAFH A S HASHHAFHHAFH A HH A H

#note this is just a "placeholder" right now for PK
#no columns are added in this step

$PK=New-Object-TypeNameMicrosoft.SglServer.Management .SMO. Index
-ArgumentList$table, "PK_Student StudentID"

SPK.IsClustered =Strue
SPK.IndexKeyType =[Microsoft.SglServer.Management.SMO.
IndexKeyTypel : :DriPrimaryKey

#identify columns part of the PK

$PKcol=New-Object-TypeNameMicrosoft.SglServer.Management .SMO.
IndexedColumn-ArgumentList$PK, ScollName

S$PK.IndexedColumns.Add ($PKcol)
$PK.Create ()

6. Do avisual check to see whether the table has been created with the correct
columns and constraints:
1. Open Management Studio.
2. Go to the AdventureWorks2008R2 database and expand Tables.
3. Expand Columns, Keys, Constraints, and Indexes.

@

Chapter 2

= X dbo.Student
= [3 Columns
¥ StudentID (PK, int, not null}
=] FMName {varchar{50), null)
=] LName {varchar(50), not null)
=] DateOfBirth (datetime, null)
i Age (Computed, int, null}
= (3 Keys
¥ PK_Student_StudentiD
= [Constraints
#=] DF_student_DateOfBirth
#5] DF_student_LName
[Triggers
B A Indexes

¥ PK_Student_StudentlD (Clustered)

To create a table, the first step is to create an SMO table object, thus:

Stable = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Table -ArgumentList $db, StableName

After this, all columns have to be defined one by one and added to the table before the Create
method of the Microsoft.SglServer.Management .SMO. Table class is invoked.

Let's take this step by step. To create a column, we first need to identify the data type we are
storing in the column and the properties of that column.

Column data types in SMO are defined in Microsoft.SglServer.Management . SMO.
DataType. Every T-SQL data type is pretty much represented in this enumeration. To use a
data type, the format should be as follows:

[Microsoft.SglServer.Management .SMO.DataType] : :DataType

To create a column, you will have to specify the table variable, the data type, and the
column name:

$collName = "StudentID"
Stype = [Microsoft.SglServer.Management.SMO.DataType] ::Int
$coll = New-Object -TypeName Microsoft.SglServer.Management.SMO.

Column -ArgumentList Stable, S$collName, Stype

SQL Server and PowerShell Basic Tasks

Common column properties will now be accessible to your column variable. Some common
properties include:

» Nullable

» Computed

» ComputedText

» Default Constraint (by usingthe AddDefaultConstraint method)

For example:

#column 4 - nullable, with default value

$col4Name = "DateOfBirth"
Stype = [Microsoft.SglServer.Management.SMO.DataType] : :DateTime;
$col4d = New-Object -TypeName Microsoft.SglServer.Management.SMO.

Column -ArgumentList $table, $col4Name, S$Stype
$col4 .Nullable = S$true

$col4 .AddDefaultConstraint ("DF_Student DateOfBirth").Text = "'1800-00-
OOI n

There are additional properties that are exposed, depending on the data type you've chosen.
For example, [Microsoft.SglServer.Management.SMO.DataType] : : Int will allow
you to specify whether this is an identity and let you set seed and increment. [Microsoft.
SglServer.Management .SMO.DataType] : : Varchar will allow you to set length.

Once you have set the properties, you can add columns to your table, as follows:

Stable.Columns.Add ($col4)

When everything is set up, you can invoke the table's Create method:

Stable.Create()

Now, to create a primary key, you will need to create two other SMO Objects. The first one is
the Index object. For this object, you can specify what type of index this is and whether it is
clustered or nonclustered:

$PK = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Index -ArgumentList $table, "PK Student_StudentID"

SPK.IsClustered = S$true

$PK.IndexKeyType = [Microsoft.SglServer.Management.SMO.
IndexKeyType] : :DriPrimaryKey

The second object, IndexedColumn, specifies what columns are part of the index.

#identify columns part of the PK

$PKcol = New-Object -TypeName Microsoft.SglServer.Management.SMO.
IndexedColumn -ArgumentList PK, ScollName

(&)

Chapter 2

If this column is an included column, simply set the IsIncluded property of the
IndexedColumn object to true.

Once you've created all index columns, you can add them to the Index and invoke the
Create method of the Index object:

SPK.IndexedColumns.Add ($PKcol)
SPK.Create ()

You must be thinking right now that what we've just gone over is a long-winded way to create
a table. And you're thinking right. It is a more verbose way to create a table. However, keep
in mind this is just one more way to get things done. When you need to create a table and if
T-SQL is a faster way to do it, go for it. However, knowing how to do it in PowerShell and SMO
is just one more tool in your arsenal for those scenarios where you might need to create the
tables dynamically or more flexibly—for example, if you need to import the definition stored in
Excel, CSV, or XML files from multiple users.

» The Creating an index recipe
» Check out the complete list of SMO DataType classes from MSDN:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
management .smo.datatype.aspx

Creating a view

This recipe shows how to create a view using PowerShell and SMO.

Getting ready

We will use the Person. Person table in the AdventureWorks2008R2 database for
this recipe.

To give you an idea of what we are attempting to create in this recipe, this is the
T-SQL equivalent:

CREATE VIEW dbo.vwVCPerson
AS
SELECT

TOP 100
BusinessEntityID,
LastName,
FirstName

s

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.datatype.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.datatype.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.datatype.aspx

SQL Server and PowerShell Basic Tasks

FROM
Person.Person
WHERE
PersonType = 'IN'
ORDER BY
LastName
GO

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQLPS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

SdbName = "AdventureWorks2008R2"
Sdb = $server.Databases [$dbName]
SviewName = "vwVCPerson"

Sview = $db.Views [SviewName]

#if view exists, drop it
if (sview)

{

$view.Drop ()

Sview = New-Object -TypeName Microsoft.SglServer.Management.SMO.
View -ArgumentList db, SviewName, "dbo"

#TextMode = false meaning we are not
#going to explicitly write the CREATE VIEW header
Sview.TextMode = S$false

Sview.TextBody @"

[

Chapter 2

SELECT
TOP 100
BusinessEntityID,
LastName,
FirstName
FROM
Person.Person
WHERE
PersonType = 'IN'
ORDER BY
LastName
"@

Sview.Create ()

Test the view from PowerShell by running the following code:

Sresult = Invoke-Sglcmd ~

-Query "SELECT * FROM vwVCPerson" ~
-ServerInstance "$instanceName" ~
-Database $dbName

$result | Format-Table -AutoSize

Do a visual check to see whether the view has been created. Open Management
Studio, go to the AdventureWorks2008R2 database, and expand Views.

= | KERRIGAN (SQL Server 11.0.1440 - KERRIGAN \Administrator)
= [Databases
[System Databases
[Database Snapshots
= | J AdventureWorks2008R2
[Database Diagrams
[Tables

[d System Views /

dbo, vw\VCPerson

HumanResources, vEmployes
HumanResources, vEmployeeDepartment

SQL Server and PowerShell Basic Tasks

To create a view using SMO and PowerShell, you first need to create an SMO View variable,
which requires three parameters: database handle, view name, and schema.

Sview = New-Object -TypeName Microsoft.SglServer.Management.SMO.View
-ArgumentList $db, $viewName, "dbo"

You can optionally set the view owner:
$view.Owner = "QUERYWORKS\aterra"

The crux of the view creation is with the view definition. You have the option here of setting
the TextMode property to either true or false.

Sview.TextMode = S$false
Sview.TextBody @"
SELECT

TOP 100
BusinessEntityID,

LastName,
FirstName
FROM
Person.Person
WHERE
PersonType = 'IN'
ORDER BY
LastName
"@

If you set the TextMode property to false, it means you are letting SMO construct the view
header for you:

Sview.TextMode = S$false

If you set the TextMode property to true, it means you have to define the view's
TextHeader property:

Sview.TextMode = Strue
Sview.TextHeader = "CREATE VIEW dbo.vwVCPerson AS "

When all the pieces are in place, you can invoke the view's Create method:

Sview.Create ()

Chapter 2

There's more...

When creating database objects such as views, stored procedures, or functions, you are
often required to write blocks of code for the object definition. Although you can technically
put all these in one line, it is best to put them in a multiline format for readability.

To embed these blocks of code in PowerShell, you will need to use a here-string.
A here-string starts with @" followed by nothing else, and is ended by "@, which
must be the first two character in its own line:

$view.TextBody = @"
SELECT
TOP 100
BusinessEntityID,
LastName,
FirstName
FROM
Person.Person
WHERE
PersonType = 'IN'
ORDER BY
LastName
"@

This construction might remind you a little bit of a C-style comment, which starts with /* and
ends with */, albeit using different characters.

Creating a stored procedure

This recipe shows how to create an encrypted stored procedure using SMO and PowerShell.

Getting ready

The T-SQL equivalent of the encrypted stored procedure we are about to recreate in
PowerShell is as follows:

CREATE PROCEDURE [dbo] . [uspGetPersonByLastName] @LastName [varchar]
(50)

WITH ENCRYPTION

AS

&1

SQL Server and PowerShell Basic Tasks

SELECT
TOP 10
BusinessEntityID,
LastName

FROM
Person.Person

WHERE
LastName = @LastName

How to do it...

Follow these steps to create the uspGetPersonByLastName stored procedure
using PowerShell:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

SdbName = "AdventureWorks2008R2"
Sdb = $server.Databases [$dbName]

#storedProcedure class on MSDN:

#http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management . smo.storedprocedure.aspx

$sprocName = "uspGetPersonByLastName"
$sproc = $db.StoredProcedures [$sprocName]
#if stored procedure exists, drop it

if ($sproc)

{

$sproc.Drop ()

~[ee]

Chapter 2

$sproc = New-Object -TypeName Microsoft.SglServer.Management.SMO.
StoredProcedure -ArgumentList db, SsprocName

#TextMode = false means stored procedure header

#is not editable as text

#otherwise our text will contain the CREATE PROC block
$sproc.TextMode = $false

$sproc.IsEncrypted = S$true

Sparamtype = [Microsoft.SglServer.Management.SMO.
Datatype] : :VarChar (50) ;

$Sparam = New-Object -TypeName Microsoft.SglServer.Management.
SMO.StoredProcedureParameter -ArgumentList S$sproc,"@
LastName", $Sparamtype

$sproc.Parameters.Add (Sparam)

#Set the TextBody property to define the stored procedure.
$sproc.TextBody = @"
SELECT
TOP 10
BusinessEntityID,
LastName
FROM
Person.Person
WHERE
LastName = @LastName
"@

Create the stored procedure on the instance of SQL Server.
$sproc.Create ()

#if later on you need to change properties, can use the Alter
method

Do a visual check to see whether the stored procedure has been created.
1. Open Management Studio.
2. Go to the AdventureWorks2008R2 database.

7}

SQL Server and PowerShell Basic Tasks

3. Expand Programmability | Stored Procedures.
4. Check that the stored procedure is there.

= | J AdventureWorks2008R2
1 Database Diagrams
[Tahles
& LA Views
L Synonyms
= 3 Programmability
= [Stored Procedures
[System Stored Procedures
dbo.uspGetBillofMaterials
dbo.uspGetEmployeeManagers
dl:uu.uspGeﬂ*"IanagerEmpluyeesK‘
E2 dbo.uspGetPersonBylastiame
dbo.uspGetWherelsedProductID
dbo.uspLogError
dbo.uspPrintError
dbo.uspSearchCandidateR esumes
HumanResources, usplpdateEmployeeHireInfo
HumanResources, usplpdateEmployeelogin
HumanResources, usplpdateEmployeePersonallnfo

FEHHHEHEEHBEBRBH

5. Test the stored procedure from PowerShell. In the same session, type the following
code and run it:

$lastName = "Abercrombie"

Sresult = Invoke-Sglcmd ~

-Query "EXEC uspGetPersonByLastName @LastName="'S$SLastName™ '"
-ServerInstance "$instanceName"

-Database $dbName

$result | Format-Table -AutoSize

To create a stored procedure, you first need to initialize an SMO StoredProcedure object.
When creating this object, you need to pass the database handle and the stored procedure
name as parameters:

Ssproc = New-Object -TypeName Microsoft.SglServer.Management.SMO.
StoredProcedure -ArgumentList $db, $sprocName

You can then set some properties of the stored procedure object, such as whether it's
encrypted or not:

Ssproc.IsEncrypted = Strue

(e

Chapter 2

If you specify TextMode = true, you will need to create the stored procedure header yourself.
If you have parameters, these will have to be defined in your text header, for example:

$sproc.TextMode = $true

$sproc.TextHeader = @"

CREATE PROCEDURE [dbo] . [uspGetPersonByLastName]
@LastName [varchar] (50)

AS

"@

Otherwise, if you set TextMode = $false, you are technically allowing PowerShell

to autogenerate this header for you, based on the other properties and parameters you
have set. You will also have to create the parameter objects one-by-one and add them
to the stored procedure.

$sproc.TextMode = $false

Sparamtype = [Microsoft.SglServer.Management.SMO.
Datatype] : :VarChar (50) ;

Sparam = New-Object -TypeName Microsoft.SglServer.Management.SMO.
StoredProcedureParameter -ArgumentList $sproc, "@LastName", $Sparamtype

$sproc.Parameters.Add ($param)

When creating the stored procedure, use a here-string as you set the definition of the
TextBody property of the stored procedure object:

$sproc.TextBody = @"
SELECT
TOP 10
BusinessEntityID,
LastName
FROM
Person.Person
WHERE
LastName = @LastName
"e@

Once the header, definition, and properties of the stored procedure are in place, you can
invoke the Create method, which sends the CREATEPROC statement to SQL Server and
creates the stored procedure.

Create the stored procedure on the instance of SQL Server.
$Ssproc.Create ()

]

SQL Server and PowerShell Basic Tasks

Creating a trigger

This recipe demonstrates how to programmatically create a trigger in SQL Server using SMO
and PowerShell.

Getting ready

For this recipe, we will use the Person. Person table in the AdventureWorks2008R2
database. We will create a trivial AFTER trigger that merely displays values from the inserted
and deleted records upon firing.

The following is the T-SQL equivalent of what we are going to accomplish programmatically in
this section:

CREATE TRIGGER [Person].[tr u Person]
ON [Person] . [Person]

AFTER UPDATE

AS

SELECT
GETDATE () AS UpdatedOn,
SYSTEM USER AS UpdatedBy,
i.LastName AS NewLastName,
i.FirstName AS NewFirstName,
d.LastName AS OldLastName,
d.FirstName AS OldFirstName
FROM
inserted i
INNER JOIN deleted d
ON i.BusinessEntityID = d.BusinessEntityID

How to do it...

Let's follow these steps to create an AFTER trigger in PowerShell:
1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

5]

Chapter 2

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Add the following script and run it:

SdbName = "AdventureWorks2008R2"
Sdb = $server.Databases [$dbName]
StableName = "Person"
$schemaName = "Person"

#get a handle to the Person.Person table
$table = $db.Tables |
Where Schema -Like "$schemaName" |
Where Name -Like "StableName"

$triggerName = "tr u Person";
#note here we need to check triggers attached to table
Strigger = S$Stable.Triggers [$StriggerName]

#if trigger exists, drop it
if ($trigger)

{

Strigger.Drop ()

Strigger = New-Object -TypeName Microsoft.SglServer.Management.
SMO.Trigger -ArgumentList $table, $triggerName

Strigger.TextMode = $false

#this is just an update trigger
Strigger.Insert = $false
Strigger.Update = Strue
Strigger.Delete = $false

#3 options for ActivationOrder: First, Last, None

Strigger.InsertOrder = [Microsoft.SglServer.Management.SMO.Agent.
ActivationOrder] : :None

Strigger.ImplementationType = [Microsoft.SglServer.Management.SMO.
ImplementationTypel : : TransactSqgl

#simple example
Strigger.TextBody = @"
SELECT
GETDATE () AS UpdatedOn,
SYSTEM_USER AS UpdatedBy,

i

SQL Server and PowerShell Basic Tasks

i.LastName AS NewLastName,
i.FirstName AS NewFirstName,
d.LastName AS OldLastName,

d.FirstName AS OldFirstName
FROM

inserted 1
INNER JOIN deleted d
ON i.BusinessEntityID = d.BusinessEntityID

"@

Strigger.Create ()

Do a visual check to see whether the stored procedure has been created. Open
Management Studio.

= [Person.Person
[Columns
H [3 Keys
[[d Constraints
=
[F] iuPerson
[Z] tr_u_Person
[Indexes

Test the stored procedure using PowerShell:

SfirstName = "Frankk"
Sresult = Invoke-Sglcmd ~

-Query "UPDATE Person.Person SET FirstName = ~'S$firstName™' WHERE
BusinessEntityID = 2081 " °

-ServerInstance "$instanceName" °
-Database $dbName

$result | Format-Table -AutoSize

Your result should look similar to the following;:

Updatedon UpdatedBy

NewLastName NewFirstName OldLastName OldFirstName

[

Chapter 2

The code for this section is quite long, so we will break it down here.

To create a trigger, you need to create a reference to both the instance and the database
first. This is something we have done for most of the recipes in this chapter, in case you
have skipped the previous recipes.

A trigger is bound to a table or view. You will need to create a variable that points to the
table you want the trigger to attach to:

StableName = "Person"
SschemaName = "Person"

$table = $db.Tables |
Where Schema -Like "$schemaName" |
Where Name -Like "StableName"

For purposes of this recipe, if the trigger exists, we will drop it.

Strigger = S$table.Triggers [$StriggerName]

#if trigger exists, drop it
if ($trigger)

{

Strigger.Drop ()

}
Next, you need to create an SMO Trigger object:

Strigger = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Trigger -ArgumentList $table, $triggerName

Next, set the TextMode property. If set to true, it means you have to define the trigger
header text yourself. Otherwise, SMO will automatically generate it for you.

Strigger.TextMode = $false

You will also need to define what type of DML trigger this is. Your options are insert,
update, and/or delete triggers. Our example is just an update trigger.

#this is just an update trigger
Strigger.Insert = $false
Strigger.Update = S$Strue
Strigger.Delete = $false

SQL Server and PowerShell Basic Tasks

You can also optionally define the trigger order. By default, there is no guarantee in what order
the triggers will be run by SQL Server, but you have the option to set it to First or Last. In
our example, we leave it at the default value, but we still explicitly define it for readability.

#3 options for ActivationOrder: First, Last, None

Strigger.InsertOrder = [Microsoft.SglServer.Management.SMO.Agent.
ActivationOrder] : :None

Our trigger is a Transact-SQL trigger. SQL Server SMO also supports SQLCLR triggers.

Strigger.ImplementationType = [Microsoft.SglServer.Management.SMO.
ImplementationTypel] : : TransactSqgl

To specify the trigger definition, you can set the value of the trigger's TextBody property. You
can use a here-string to assign the trigger code block to the TextBody property:

#simple example
Strigger.TextBody = @"
SELECT
GETDATE () AS UpdatedOn,
SYSTEM USER AS UpdatedBy,
i.LastName AS NewLastName,
i.FirstName AS NewFirstName,
d.LastName AS OldLastName,
d.FirstName AS OldFirstName
FROM
inserted i
INNER JOIN deleted d
ON i.BusinessEntityID = d.BusinessEntityID

ll@
When ready, invoke the Create () method of the trigger.

Strigger.Create ()

=

Chapter 2

Creating an index

This recipe demonstrates how to create a non-clustered index with an included column using
PowerShell and SMO.

Getting ready

We will use the Person.Person table in the AdventureWorks2008R2 database. We will
create a non-clustered index on FirstName, LastName, and include MiddleName. The
T-SQL equivalent of this task is:

CREATE NONCLUSTERED INDEX [idxLastNameFirstName]
ON [Person] . [Person]
(
[LastName] ASC,
[FirstName] ASC
)
INCLUDE ([MiddleNamel])
GO

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.

Server -ArgumentList $instanceName
3. Add the following script and run it:

SdbName = "AdventureWorks2008R2"
Sdb = $server.Databases[$dbName]

StableName = "Person"
S$gchemaName = "Person"

$table = $db.Tables |
Where Schema -Like "$schemaName"

[55]-

SQL Server and PowerShell Basic Tasks

Where Name -Like "StableName"

S$indexName = "idxLastNameFirstName"
$index = Stable.Indexes [$SindexName]
#if stored procedure exists, drop it
if ($index)

{

$index.Drop ()

$index = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Index -ArgumentList $table, $indexName

#first index column, by default sorted ascending

$idxColl = New-Object -TypeName Microsoft.SglServer.Management.
SMO. IndexedColumn -ArgumentList S$index, "LastName", S$false

$index.IndexedColumns.Add ($idxColl)

#second index column, by default sorted ascending

$idxCol2 = New-Object -TypeName Microsoft.SglServer.Management.
SMO. IndexedColumn -ArgumentList S$index, "FirstName", S$false

$index.IndexedColumns.Add ($idxCol2)

#included column

$inclColl = New-Object -TypeName Microsoft.SglServer.Management.
SMO. IndexedColumn -ArgumentList S$index, "MiddleName"

$inclColl.IsIncluded = S$Strue
$index.IndexedColumns.Add ($SinclColl)

#Set the index properties.

<#

None - no constraint

DriPrimaryKey - primary key

DriUniqueKey - unique constraint

#>

$index.IndexKeyType = [Microsoft.SglServer.Management.SMO.
IndexKeyType] : :None

$index.IsClustered = S$false

$index.FillFactor = 70

#Create the index on the instance of SQL Server.
$index.Create ()

5]

Chapter 2

4. Do a visual check to see whether the stored procedure has been created. Open
Management Studio:

= = Person.Person
3 Columns
[Keys
[Constraints
3 Triggers
= [Indexes

AK_Person_rowaguid (Unigue, Mon-Clustered) /
iduLastMameFirstiame (Mon-Unique, Mon-Clustered)

I¥_Person_LastName_FirstMame_MiddleMame (Mon-Unique, Mon-Clustered)
PK._Person_BusinessEntityID (Clustered)

PXML_Person_AddContact (Primary XML)

F¥XML_Person_Demographics (Primary XML)
¥MLPATH_Person_Demographics (Secondary XML, Path)

¥MLPROPERTY _Person_Demoaraphics (Secondary XML, Property)
¥MLVALUE_Person_Demographics (Secondary XML, Value)

The first step to creating an index is to create an SMO index object, which requires both the
table/view handle and the index name:

e e e He Hewld e e He

$index = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Index -ArgumentList $table, $indexName

The next step is to identify all index columns using the IndexedColumn property of the
Microsoft.SglServer.Management .SMO. Index class:

#first index column

$idxColl = New-Object -TypeName Microsoft.SglServer.Management.SMO.
IndexedColumn -ArgumentList $index, "LastName", $false; #sort asc
$index. IndexedColumns.Add ($idxColl)

#second index column

$idxCol2 = New-Object -TypeName Microsoft.SglServer.Management.SMO.
IndexedColumn -ArgumentList $index, "FirstName", $false; #sort asc
$index. IndexedColumns.Add ($idxCol2)

Optionally, you can add included columns, in other words, columns that "tag along" with the
index but are not part of the indexed columns:

#included column

$inclColl = New-Object -TypeName Microsoft.SglServer.Management.SMO.
IndexedColumn -ArgumentList $index, "MiddleName"
$inclColl.IsIncluded = S$true

$index.IndexedColumns.Add ($inclColl)

o7}

SQL Server and PowerShell Basic Tasks

The type of the index can be specified using the IndexKeyType property of the Microsoft.
SglServer.Management . SMO. IndexedColumn class, which accepts three possible values:
» None: Non-unique
» DriPrimaryKey: Primary key
» DriUniqueKey: Unique key

Additional properties can also be set, including FillFactor, and whether this key is
clustered or not:

$index.IndexKeyType = [Microsoft.SglServer.Management.SMO.
IndexKeyType] : :None

$index.IsClustered = $false

$index.FillFactor = 70

When all properties are set, invoke the Create method of the SMO index object.

#Create the index on the instance of SQL Server.
Sindex.Create ()

The SMO Index object also supports different kinds of indexes:

Index Type What to set

Filtered HasFilter
FilterDefinition

FullText IsFullTextKey = strue

XML IsXMLIndex = Strue

Spatial IsSpatialIndex = Strue

To get more information about index options, check out the MSDN documentation on
SMO indexes:

http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management . smo.index.aspx

See also

» The Creating a table recipe

5]

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.index.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.index.aspx

Chapter 2

Executing a query / SQL script

This recipe shows how you can execute either a hardcoded query or a SQL script,
from PowerShell.

Getting ready

Create a file in your C: \ Temp folder called SampleScript.sqgl. This should contain:

SELECT *
FROM Person.Person

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

SdbName = "AdventureWorks2008R2"
Sdb = $server.Databases[$dbName]

#execute a passthrough query, and export to a CSV file
Invoke-Sglcmd ~

-Query "SELECT * FROM Person.Person" °

-ServerInstance "$instanceName" ~

-Database $dbName |

Export-Csv -LiteralPath "C:\Temp\ResultsFromPassThrough.csv"
-NoTypeInformation

#execute the SampleScript.sqgl, and display results to screen
Invoke-SglCmd ~

-InputFile "C:\Temp\SampleScript.sqgl"
-ServerInstance "$instanceName"
-Database $dbName |

Select FirstName, LastName, ModifiedDate |
Format-Table

<~

SQL Server and PowerShell Basic Tasks

Start warming up to the Invoke-Sqglcmd cmdlet. We will be using it a lot in this book.

As the name suggests, this cmdlet allows you to run T-SQL code or scripts and commands
supported by the SQLCMD utility. It also allows you to run XQuery code. Invoke-Sglcmd is
your all-purpose SQL utility cmdlet.

To get more information about Invoke-Sqglcmd, use the Get -Help cmdlet

Get-Help Invoke-Sglcmd -Full

In this recipe, we looked at two ways of using Invoke-Sqglcmd. The first is by specifying a
query to run. For this, you should use the -Query option:

#texecute a passthrough query, and export to a CSV file
Invoke-Sglcmd ~

-Query "SELECT * FROM Person.Person"

-ServerInstance "$instanceName"

-Database $dbName |

Export-Csv -LiteralPath "C:\Temp\ResultsFromPassThrough.csv"
-NoTypeInformation

For the second way, which requires running a SQL Script, you need to specify the
—-InputFile switch:

#texecute the SampleScript.sgl, and display results to screen
Invoke-SglCmd ~

-InputFile "C:\Temp\SampleScript.sqgl" °

-ServerInstance "$instanceName"

-Database $dbName |

Select FirstName, LastName, ModifiedDate |

Format-Table

Performing bulk export using Invoke-Sqlcmd

This recipe demonstrates how to export contents of a table to a CSV file using PowerShell and
the Invoke-Sglcemd cmdlet.

Getting ready

Make sure you have access to the AdventureWorks2008R2 database. We will use the
Person.Person table.

Create a C: \Temp folder, if you don't already have one on your system.

100

Chapter 2

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

#database handle
SdbName = "AdventureWorks2008R2"
Sdb = $server.Databases [$dbName]

#texport file name

Sexportfile = "C:\Temp\Person Person.csv"
Squery = @"
SELECT
*
FROM

Person.Person
"@
Invoke-Sglcmd -Query $query -ServerInstance "$instanceName"
-Database $dbName |

Export-Csv -LiteralPath $exportfile -NoTypeInformation

In this recipe, we export the results of a query to a CSV file. There are two core parts of the
export approach in this recipe.

The first part is executing the query, and for this, we use the Invoke-Sglcmd cmdlet. We
specify the instance and database and send a query to SQL Server through this cmdlet:

Invoke-Sglcmd -Query $query -ServerInstance "$instanceName" -Database
$dbName |

Export-Csv -LiteralPath $exportfile -NoTypeInformation

SQL Server and PowerShell Basic Tasks

The second part is piping the results to the Export -Csv cmdlet and specifying the file in
which the results are supposed to be stored. We also specify -NoTypeInformation, SO
the cmdlet will omit the #TYPE .NET information type as the first line in the file:

Invoke-Sglcmd -Query S$query -ServerInstance "S$instanceName" -Database
$dbName |

Export-Csv -LiteralPath $exportfile -NoTypeInformation

See also

» The Executing a query / SQL script recipe

Performing bulk export using bcp

This recipe demonstrates how to export contents of a table to a CSV file using PowerShell
and bep.

Getting ready

Make sure you have access to the AdventureWorks2008R2 database. We will export the
Person.Person table to a timestamped text file delimited by a pipe (|).

Create a C: \Temp\Exports folder, if you don't already have it on your system.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the following script and run the following code:

Sserver = "KERRIGAN"
Stable = "AdventureWorks2008R2.Person.Person"
$curdate = Get-Date -Format "yyyy-MM-dd hmmtt"

$foldername = "C:\Temp\Exports\"

#format file name
Sformatfilename = "$(Stable) $(Scurdate) .fmt"

#export file name
Sexportfilename = "$($table)_ $(sScurdate) .csv"

$destination exportfilename = "$($foldername)$ (Sexportfilename)"

102

Chapter 2

$destination formatfilename = "$($foldername)$ ($Sformatfilename)"

#command to generate format file

Scmdformatfile = "bcp $Stable format nul -T -c -t \"|‘" -r “"\n "
-f ""$($destination formatfilename) ™" -S$($server)"

#icommand to generate the export file

$cmdexport = "bcp $(Stable) out “"$(Sdestination exportfilename) ~"
-S$(sserver) -T -f “"$Sdestination formatfilename™""
<#

Scmdformatfile gives you something like this:

bcp AdventureWorks2008R2.Person.Person format nul -T -c -t "|" -r
"\n" -f "C:\Temp\Exports\AdventureWorks2008R2.Person.Person 2011-
12-27 913PM.fmt" -S KERRIGAN

$cmdexport gives you something like this:

becp AdventureWorks2008R2.Person.Person out "C:\Temp\Exports)\
AdventureWorks2008R2.Person.Person 2011-12-27 913PM.csv" -S
KERRIGAN -T -c -f "C:\Temp\Exports\AdventureWorks2008R2.Per

son.Person 2011-12-27 913PM.fmt"
#>

#run the format file command
Invoke-Expression $cmdformatfile

#delay 1 sec, give server some time to generate the format file
#sleep helps us avoid race conditions
Start-Sleep -s 1

#run the export command
Invoke-Expression $cmdexport

#icheck the folder for generated file
explorer.exe $foldername

Using SQL Server's bcp command is often the faster way to export records out of SQL Server.
It is also often preferred, because bep offers flexibility in the export format.

The default export format of bcp uses a tab (\t) as a field delimiter and a carriage return
newline character (\r\n) as a row delimiter. If you want to change this, you will need to
create and use a format file that specifies how you want the export to be formatted.

SQL Server and PowerShell Basic Tasks
In our recipe, we first timestamp both the format file and then export file names.

$curdate = Get-Date -Format "yyyy-MM-dd hmmtt"
$foldername = "C:\Temp\Exports\"

#format file name
S$formatfilename = "$($table) $($Scurdate) .fmt"
#export file name
Sexportfilename = "$($table) $(Scurdate) .csv"

$destination exportfilename = "$($foldername)$ (Sexportfilename)"
$destination formatfilename

"S(sfoldername) S (Sformatfilename) "
We then construct the string that will generate the format file as follows:

#command to generate the export file
Scmdexport = "bcp $(Stable) out “"$($destination exportfilename) ™"
-S$ ($server) -T -f “"Sdestination formatfilename™""

Note that because the actual command requires double quotes, when we construct the
command, we need to escape the double quote within the command with a backtick (~).

This command that is constructed should be similar to the following:

bep AdventureWorks2008R2.Person.Person format nul -T -c -t "|" -r
"\n" -f "C:\Temp\Exports\AdventureWorks2008R2.Person.Person 2011-12-
27_913PM.fmt" -SKERRIGAN

We also construct the command that will export the records using the format file we
just created:

#command to generate the export file
Scmdexport = "bcp $(Stable) out “"$($destination exportfilename) ™"
-S$ ($server) -T -f “"Sdestination formatfilename™""

This will give us something similar to the following;:

bcp AdventureWorks2008R2.Person.Person out "C:\Temp\Exports)\
AdventureWorks2008R2.Person.Person_ 2011-12-27_913PM.csv" -SKERRIGAN
-T -f "C:\Temp\Exports\AdventureWorks2008R2.Person.Person 2011-12-
27 _913PM.fmt"

When the strings containing the commands are complete, we can execute the command using
the Invoke-Expression cmdlet. We run the format file creation command first, and then use
the Sstart-Sleep cmdlet to pause for 1 second, to ensure the format file has been created
first, before we invoke the command to do the actual export.

Chapter 2

#run the format file command
Invoke-Expression $cmdformatfile

#delay 1 sec, give server some time to generate
#the format file

#sleep helps us avoid race conditions
Start-Sleep -s 1

#run the export command
Invoke-Expression $cmdexport

If we don't wait, there will be a bigger chance for all the commands to be executed really fast,
and the command to export will run before the format file has been generated. This will lead
to an error, because the bcp command will not be able to find the format file.

Lastly, we just open up Windows Explorer, so we can inspect the files we generated.

#icheck the folder for generated file
explorer.exe $foldername

See also

» The Performing bulk export using Invoke-Sqlcmd recipe

» Read more about bcp format file options at http://msdn.microsoft.com/en-
us/library/ms191516.aspx.

Performing bulk import using BULK INSERT

This recipe will walk you through importing contents of a CSV file to SQL Server using PowerShell
and BULK INSERT.

Getting ready

To do a test import, we will first need to create a Person table similar to the Person.Person
table from the AdventureWorks2008R2 database, with some slight modifications.

We will create this in the Test schema, and we will remove some of the constraints and keep
this table as simple and independent as we can.

To create the table that we need for this exercise, open up Management Studio and run the
following code:

CREATE SCHEMA [Test]
GO

http://msdn.microsoft.com/en-us/library/ms191516.aspx

SQL Server and PowerShell Basic Tasks

CREATE TABLE [Test]. [Person] (

[BusinessEntityID] [int] NOT NULL PRIMARY KEY,
[PersonType] [nchar] (2) NOT NULL,

[NameStyle] [dbo] . [NameStyle] NOT NULL,
[Title] [nvarchar] (8) NULL,

[FirstName] [dbo] . [Name] NOT NULL,

[MiddleName] [dbo] . [Name] NULL,

[LastName] [dbo] . [Name] NOT NULL,

[Suffix] [nvarchar] (10) NULL,

[EmailPromotion] [int] NOT NULL,
[AdditionalContactInfo] [xml] NULL,
[Demographics] [xml] NULL,

[rowguid] [uniqueidentifier] ROWGUIDCOL NOT NULL,
[ModifiedDate] [datetime] NOT NULL

GO

For this recipe, we will import a file called AdventureWorks2008R2.Person.Person.csv,

which

is provided with the downloadable materials from the Packt site. Save this in the folder

C:\Temp\Exports.

Alternatively, create a CSV file, as mentioned in the Performing bulk export using bcp recipe,
and replace the filename reference in this recipe with the filename you generate.

How to do it...

1.

106

Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

Let's add some helper functions first. Type the following and execute it:
Import-Module SQLPS -DisableNameChecking

function Import-Person {

<#
.SYNOPSIS
Very simple function to get number
of records in Test.Person
.NOTES
Author : Donabel Santos
.LINK
http://www.sglmusings.com
#>

param([string] SinstanceName, [string] $dbName)

Chapter 2

Squery = @"
TRUNCATE TABLE Test.Person
GO

BULK INSERT AdventureWorks2008R2.Test.Person
FROM 'C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv'
WITH
(
FIELDTERMINATOR ='|',
ROWTERMINATOR ='\n'
)
SELECT COUNT (*) AS NumRecords
FROM AdventureWorks2008R2.Test.Person
"@;

#check number of records
Invoke-Sglcmd -Query $Squery ~
-ServerInstance "$instanceName"
-Database $dbName

}
3. Now let's invoke the function in the same session, as follows:

SinstanceName = "KERRIGAN"
SdbName = "AdventureWorks2008R2"
Import-Person $instanceName $dbName

Importing records from a CSV or text file into a SQL Server table using the BULK INSERT
command will require constructing the BULK INSERT T-SQL statement and executing this
statement using the Invoke-Sglcmd cmdlet:

Invoke-Sglcmd -Query Squery

-ServerInstance "$instanceName"
-Database $dbName

However, we have done things a little bit differently than in our previous recipes. In this recipe,
we first created a function that encapsulates all the core import tasks.

To create a function, you first need to create a function header:
function Import-Person {

The function header starts with the keyword function and is then followed by the function
name in the format verb-noun. The body of the function is encapsulated by opening and
closing curly braces { }.

SQL Server and PowerShell Basic Tasks

Right after the function header, we also create a comment-based help header comment.

<#
.SYNOPSIS
Very simple function to get number of records in Test.Person
.NOTES
Author : Donabel Santos
.LINK
http://www.sglmusings.com
#>

Block comments in PowerShell start with <# and end with #>. In addition, this is a special
type of block comment that allows this function's comments to be displayed in a Get-Help
cmdlet. We now type:

Get-Help Import-Person

This will provide output similar to the help you get for any other cmdlet:

PS C:hUsershAdministrator> Get-Help Import-Person

NAME
Import-Persan

SYNOPSIS
Very simple function to get number
of records in Test.Person

SYNTAX
Import-Person [[-instanceMame] <5tring=] [[-dbName] <String=] [<CommonParameters=]

DESCRIPTION

RELATED LINKS
http://www.sqlmusings. com

REMARKS
To see the examples, type: "get-help Import-Person -examples"
For more information, type: "get-help Import-Person -detailed”.
For technical information, type: "get-help Import-Person -full”™.

After the function header and comment come the parameters. Our Import -Person function
accepts two parameters: instance name and database name.

param([string] SinstanceName, [string] $dbName)

108

Chapter 2

Following our parameter definition is the function definition. We start by creating a here-string,
which contains our T-SQL statement:

Squery = @"
TRUNCATE TABLE Test.Person
GO

BULK INSERT AdventureWorks2008R2.Test.Person
FROM 'C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv'
WITH
(
FIELDTERMINATOR ='|',
ROWTERMINATOR ='\n'
)
SELECT COUNT (*) AS NumRecords
FROM AdventureWorks2008R2.Test.Person
n@;

After our query is constructed, we pass it to the Invoke-Sglcmd cmdlet, which in turn sends
and executes it in our SQL Server instance.

Invoke-Sglcmd -Query Squery
-ServerInstance "$instanceName"
-Database $dbName

Functions in PowerShell are local-scoped by default, but when run through the ISE maintain
a global scope. In our recipe, once you run the first part of the script that has the function
definition, this function can be invoked at any time in the current session. We can see that
the function simplifies importing the records and all that we need is the instance name, the
database name, and the Import-Person function.

SinstanceName = "KERRIGAN"
SdbName = "AdventureWorks2008R2"
Import-Person $instanceName $dbName

If you are using the shell and you want this function to persist globally across different scopes,
save the script as a . ps1 file and dot source it. Another way is to prepend the function name
with global:

function global:Import-Person {

» The Executing a query / SQL script recipe
» The Performing bulk import using bcp recipe

SQL Server and PowerShell Basic Tasks

Performing bulk import using bcp

This recipe will walk you through the process of importing the contents of a CSV file to SQL
Server using PowerShell and bep.

Getting ready

To do a test import, let's first create a Person table similar to the Person. Person table from
the AdventureWorks2008R2 database, with some slight modifications. We will create this in
the Test schema, and we will remove some of the constraints and keep this table as simple
and independent as we can.

If Test . Person does not yet exist in your environment, let's create it. Open up Management
Studio, and run the following code:

CREATE SCHEMA [Test]

GO

CREATE TABLE [Test]. [Person] (
[BusinessEntityID] [int] NOT NULL PRIMARY KEY,
[PersonType] [nchar] (2) NOT NULL,
[NameStyle] [dbo] . [NameStyle] NOT NULL,
[Title] [nvarchar] (8) NULL,
[FirstName] [dbo] . [Name] NOT NULL,
[MiddleName] [dbo] . [Name] NULL,
[LastName] [dbo] . [Name] NOT NULL,
[Suffix] [nvarchar] (10) NULL,
[EmailPromotion] [int] NOT NULL,
[AdditionalContactInfo] [xml] NULL,
[Demographics] [xml] NULL,
[rowguid] [uniqueidentifier] ROWGUIDCOL NOT NULL,
[ModifiedDate] [datetime] NOT NULL

GO

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Let's add some helper functions first. Type the following and then run it

Import-Module SQLPS -DisableNameChecking
SinstanceName = "KERRIGAN"
$dbName = "AdventureWorks2008R2"

Chapter 2

function Truncate-Table {

<#
.SYNOPSIS
Very simple function to truncate
records from Test.Person
.NOTES
Author : Donabel Santos
.LINK
http://www.sglmusings.com
#>

param([string] SinstanceName, [string] $dbName)

Squery = @"

TRUNCATE TABLE Test.Person
n

@

#icheck number of records
Invoke-Sglcmd -Query $Squery
-ServerInstance $instanceName
-Database $dbName

}

function Get-PersonCount {

<#
.SYNOPSIS
Very simple function to get number
of records in Test.Person
.NOTES
Author : Donabel Santos
.LINK
http://www.sglmusings.com
#>
param([string] SinstanceName, [string] $dbName)
Squery = @"

SELECT COUNT (*) AS NumRecords
FROM Test.Person

n

@

#icheck number of records
Invoke-Sglcmd -Query $Squery
-ServerInstance $instanceName
-Database S$dbName

}

SQL Server and PowerShell Basic Tasks

3.

Add the following script and run it:

#let's clean up the Test.Person table first
Truncate-Table $instanceName S$dbName

Sserver = "KERRIGAN"

Stable = "AdventureWorks2008R2.Test.Person"

Simportfile = "C:\Temp\Exports\AdventureWorks2008R2.Person.Person.
csv"

#command to import from csv

Scmdimport = "bcp $(Stable) in “"S$(Simportfile) " -SsSserver -T -c
-t ‘nl\n -r \n\n\n "
<#

Scmdimport gives you something like this:

bcp AdventureWorks2008R2.Test.Person in "C:\Temp\Exports\
AdventureWorks2008R2.Person.Person.csv" —-SKERRIGAN -T -c -t "|" -r
n\nn

#>

#run the import command
Invoke-Expression $cmdimport

#delay 1 sec, give server some time to import records
#sleep helps us avoid race conditions

Start-Sleep -s 2

Get-PersonCount $instanceName $dbName

Performing a bulk import using bep is a straightforward task—we need to use the
Invoke-Expression cmdlet and pass in the bcp command. In this recipe, however, we
have cleaned up our script a little bit and have started off with a couple of helper functions.

The first helper function, Truncate-Table, is a simple helper function that truncates
the Test . Person table to which we want to import the records. This function passes
the TRUNCATE TABLE command to SQL Server using the Invoke-Sglcmd cmdlet.
To use this function, simply call:

Truncate-Table $instanceName S$dbName

Chapter 2

The second helper function, Get - PersonCount, simply returns a count of the records that
have been imported into the Test . Person table. This also uses the Invoke-Sglcmd
cmdlet. To invoke the function, use the following code:

Get-PersonCount $instanceName $dbName

The core of this recipe is with the construction of the bep import command:

Sserver = "KERRIGAN"
Stable = "AdventureWorks2008R2.Test.Person"
$importfile = "C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv"

#command to import from csv

Scmdimport = "bcp " + Stable + " in " + '"' + Simportfile + '"' + " -8
$server -T -c -t “"| " -r “v\n " "

This will give us the bcp command that points to the import file; it specifies the pipe as the
field delimiter and newline as the row delimiter:

bcp AdventureWorks2008R2.Test.Person in "C:\Temp\Exports\
AdventureWorks2008R2.Person.Person.csv" -T -c -t "|" -r "\n"

Once this command is constructed, we just need to pass it to the Invoke-Sqglcmd expression:
Invoke-Expression $cmdimport

We also added a little bit of delay here using the Start-Sleep cmdlet, with a sleep interval
of 2 seconds, to allow INSERT to happen before we count the records. This is a very simplistic
way to avoid race conditions, but for our purposes in this recipe it is sufficient.

» The Performing bulk import using BULK INSERT recipe
» The Performing bulk export using bcp recipe

Basic Administration

In this chapter, we will cover:

» Creating a SQL Server instance inventory
» Creating a SQL Server database inventory
» Listing installed hotfixes and service packs
» Listing running/blocking processes

» Killing a blocking process

» Checking disk space usage

» Setting up WMI Server event alerts

» Detaching a database

» Attaching a database

» Copying a database

» Executing a SQL query to multiple servers
» Creating a filegroup

» Adding secondary data files to a filegroup
» Moving an index to a different filegroup

» Checking index fragmentation

» Reorganizing/rebuilding an index

» Running DBCC commands

» Setting up Database Mail

» Listing SQL Server jobs

» Adding a SQL Server operator

» Creating a SQL Server job

Basic Administration

» Adding a SQL Server event alert
» Running a SQL Server job
» Scheduling a SQL Server job

Introduction

In this chapter, we will tackle some more administrative tasks that can be accomplished

using PowerShell. PowerShell can help automate a lot of the repetitive, tedious, and mundane
tasks that take many clicks to accomplish. We will look at ways to get SQL Server instance and
database properties and log them to a file. We are also going to explore tasks such as checking
disk space, creating WMI alerts, setting up Database Mail, and creating and maintaining SQL
Server jobs.

Check out the Introduction section in Chapter 2, SQL Server and PowerShell Basic Tasks, for
the development environment settings needed for the recipes in this chapter.

Creating a SQL Server instance inventory

In this recipe, we will export SQL Server instance properties to a text file.

How to do it...

4. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

5. Import the SQL.PS module, and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

6. Add the following script and run:

#specify folder and filename to be produced

$folder = "C:\Temp"

S$currdate = Get-Date -Format "yyyy-MM-dd hmmtt"

$filename = "$(sinstanceName) InstancelInventory_ $($currdate) .csv"
$fullpath = Join-Path $folder $filename

#export all “server” object properties
#note we are using V3 simplified Where-Object syntax

116

Chapter 3

$server |

Get-Member |

Where-Object Name -ne "SystemMessages" |

Where-Object MemberType -eq "Property" |

Select Name, @{Name="Value";Expression={$server.($_ .Name)}} |
Export-Csv -Path $fullpath -NoTypeInformation

#jobs are also extremely important to monitor, archive
#export all job names + last run date and result
$server.JobServer.Jobs |

Select @{Name="Name";Expression={"Job: $($_ .Name)"}},

@{Name="Value";Expression={"Last run: $($_.LastRunDate)
($($_.LastRunOutcome))" }} |

Export-Csv -Path $fullpath -NoTypeInformation -Append

#show file in explorer
explorer $folder

It is important to regularly take an inventory of your SQL Server instances, in other words, get a
list of the instances and their properties, for auditing and archiving purposes. It will be easier to
detect changes if you know what your baseline properties are.

There are different ways of extracting different SQL Server settings using PowerShell. What we
will be using in this recipe is a fairly simple script, but exhaustive.

Let's dissect the first part first. Note that this block of code will work only in PowerShell V3
because of the simplified Where-0Object syntax:

$server |

Get-Member |

Where-Object Name -ne "SystemMessages" |

Where-Object MemberType -eq "Property" |

Select Name, @{Name="Value";Expression={$server.($.Name)}} |
Export-Csv -Path $fullpath -NoTypeInformation

If you want to do this in V2, this is the equivalent block of code:

#texport all “server” object properties
$server |
Get-Member |

Where {$_ .MemberType -eqg "Property" -and $_ .Name -ne
"SystemMessages"} |

Select Name, @{Name="Va U.e",'EXpreSSlOn—_ server. .Name
EXpOrt—CSV —path $fullpath —nOTypeInfOrmathn
i

Basic Administration

The first couple of lines retrieve all the properties and methods of the server object:

$server |
Get-Member |

The next part retrieves all the non-system message properties:

Where-Object Name -ne "SystemMessages" |
Where-Object MemberType -eq "Property" |

We filter out all system messages because these would clutter our inventory. This filter would
normally lead to a result that looks similar to the one shown in the following screenshot:

TypeName: Microsoft.SglServer.Management. Smo. Server

Name Member Type Definition

ActiveDirectory Property Microsoft.SglServer.Management.Smo. Server
AffinityInfo Property Microsoft.SglServer.Management. Smo. AFfinit
AuditLevel Property Microsoft. SglServer.Management. Smo. AuditlL
Audits Property Microsoft.sglServer.Management. Smo. AuditC
AvailabilityGroups Property Microsoft.SqglServer.Management. 5mo. Availal
BackupDevices Property Microsoft.SglServer.Management. Smo. Backup
BackupDirectory Property System. 5tring BackupDirectory {get;set;}
BrowserServiceAccount Property System. 5tring BrowserServiceAccount {get;
BrowserStartMode Property Microsoft.SglServer.Management. Smo. Servic
BuildCIrversion Property System.Version BuildCIrVersion {get;}
BuildClrVersionString Property System.S5tring BuildClrVersionString {get;
Bui TdNumber Property System.Int32 BuildNumber {get;}
ClusterMame Property System.5tring ClusterMame {get;}
ClusterQuorumstate Property Microsoft.sglserver.Management. Smo.Cluster
ClusterQuorumType Property Microsoft.SglServer.Management.Smo.Cluster
Collation Property System.S5tring Collation {get;}

CollationID Property System.Int32 CollationID {get;}
ComparisonStyle Property System.Int32 ComparisonStyle {get;}

CompgterNamePhysicaTﬂetBIOS Property System.string ComputerNamePhysica1NetEIQS

Instead of displaying the results, we pipe the results to the line:
Select Name, @{Name="Value";Expression={$server.($.Name)}} |

This is at the core of retrieving the inventory. The interim results containing the properties are
piped to this line, and $sexrver. ($_.Name) retrieves the current property in the pipe. For
example, if the current property in the pipeline is Collation, then this would be translated
to $server.Collation.

The last part of this line exports the results to a text, Comma-Separated Value (CSV) file:
Export-Csv -Path $fullpath -NoTypeInformation

This is not where we stop our script though. We append the job names of a server, including
the last run date and last run result, to this file:

Chapter 3

$server.JobServer.Jobs |
Select @{Name="Name";Expression={"Job: $($_ .Name)"}},

@{Name="Value";Expression={"Last run: $($_.LastRunDate) ($($_.
LastRunOutcome))" }} |

Export-Csv -Path $fullpath -NoTypeInformation -Append

For this line, we have to use $server.JobServer.Jobs instead of $server only. We take
the Job's Name, LastRunDate, and LastRunOutcome properties.

Your resulting Excel file should look similar to this:

A [
Mame Value
ComputerNamePhysicalNetBIOS KERRIGAMN
Configuration Microsoft.SglServer.Management.Smo.Configuration
ConnectionContext server="KERRIGAN';Trusted_Connection=true;Application Name='SQL
Credentials [E23B854E-C27B-4ADC-ABSA-T573C3CTHTFE]
CryptographicProviders
Databases [AdventureWorks2008R2] [master] [model] [msdb] [ReportServer] [R
DefaultFile
DefaultLog
DefauliTextMode
Edition Enterprise Evaluation Edition (64-bit)
Endpoints [Dedicated Admin Connection] [TSQL Default TCP] [TSCL Default VIA]
EngineEdition EnterpriseOrDeveloper
ErrorLogPath C:\Program Files\Microsoft SQL Server\M55QL11.MSSQLSERVER\MSS
Events Microsoft.SqlServer.Management.Smo.ServerEvents
FilestreamlLevel TSglFullFileSystemAccess
FilestreamShareName MSSQLSERVER
FullTextService [KERRIGAN]
HadrManagerStatus Failed
Information Microsoft.SglServer.Management.Smo.lnformation
InstallDataDirectory C:\Program Files\Microsoft SQL Server\MS5QL11.MSSQLSERVER\MSS
InstallSharedDirectory C:\Program Files\Microsoft 5QL Server\MSSQL11.MS55QLSERVER\MSS
Inctancablammo

There's more...

There are different ways to extract inventory information. The recipe just loops through all
properties exposed with SMO and exports them to our CSV file. However, you may prefer to
extract specific properties and eliminate ones that are not applicable to your inventory. This
will entail exploring the SMO object model and working with Get -Member to nail down exactly
which properties you want exported. With this approach, the resulting CSV is going to be more
concise and relevant to your needs.

Basic Administration
These are examples of other explicitly defined properties:

$server.Information.EngineEdition
$server.Information.Collation
$server.Settings.LoginMode
$server.Settings.MailProfile

$server.Configuration.AgentXPsEnabled
$server.Configuration. DatabaseMailEnabled

To export to CSV, you can store these properties into a hash and create a PSObject class
from the hash. The PSObject class can be piped to the Export-Csv cmdlet:

#export some “server” object properties
#capture info you want to capture into a hash
#the hash will make it easier to export to CSV

$hash = @
"EngineEdition" = $server.Information.EngineEdition
"Collation" = $server.Information.Collation
"LoginMode" = $server.Settings.LoginMode
"MailProfile" = $server.Settings.MailProfile
"AgentXPsEnabled" = $server.Configuration.AgentXPsEnabled
"DatabaseMailEnabled" = $server.Configuration.DatabaseMailEnabled

}

#icreate a new "row" and add to the results array
Sitem = New-Object PSObject -Property S$hash

$item |
Export-Csv -Path $fullpath -NoTypeInformation

» The Creating a SQL Server database inventory recipe

Creating a SQL Server database inventory

This recipe walks you through the process of retrieving database properties and saving them
to a file for inventorying purposes.

Getting ready

Log in to your SQL Server instance. Check which user databases are available for you to
investigate. These same databases should appear in your resulting file after you run the
PowerShell script.

120

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows

3.

PowerShell | Windows PowerShell ISE.
Import the SQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

Chapter 3

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.

Server -ArgumentList $instanceName

Add the following script and run:

#specify folder and filename to be produced
$folder = "C:\Temp"
$currdate = Get-Date -Format "yyyy-MM-dd hmmtt"

$filename = "$(SinstanceName) DatabaseInventory $($currdate) .csv"

$fullpath = Join-Path $folder $filename
$result = @()

#get properties of all databases in instance
foreach ($db in $server.Databases)

{

Sitem = S$null

#capture info you want to capture into a hash
#the hash will make it easier to export to CSV

$hash = @f

"DatabaseName" = $db.Name

"CreateDate" = $db.CreateDate

"Owner" = $db.Owner

"RecoveryModel" = $db.RecoveryModel

"SizeMB" = $db.Size

"DataSpaceUsage" = ($db.DataSpaceUsage/1MB) .
ToString ("0.00")

"IndexSpaceUsage" = ($db.IndexSpaceUsage/1MB) .
ToString ("0.00")

"Collation" = $db.Collation

"Users" = (($db.Users | Foreach {$_ .Name})
",

"UserCount" = $db.Users.Count

"TableCount" = $db.Tables.Count

"SpCount" = $db.StoredProcedures.Count

"UDFCount" = $db.UserDefinedFunctions.Count

-join

Basic Administration

"ViewCount" = $db.Views.Count

"TriggerCount" = $db.Triggers.Count
"LastBackupDate" = $db.LastBackupDate
"LastDiffBackupDate" = $db.LastDifferentialBackupDate
"LastLogBackupDate" = $db.LastBackupDate

}

#icreate a new "row" and add to the results array
Sitem = New-Object PSObject -Property S$Shash
Sresult += Sitem

#export result to CSV

#note CSV can be opened in Excel, which is handy

Sresult |

Select DatabaseName, CreateDate, Owner, RecoveryModel,

SizeMB, DataSpaceUsage, IndexSpaceUsage, Collation, UserCount,
TableCount, SPCount, ViewCount, TriggerCount, LastBackupDate,
LastDiffBackupDate, LastLogBackupDate, Users |

Export-Csv -Path $fullpath -NoTypeInformation

#view folder
explorer $folder

We have taken a slightly different approach with the database inventory compared to the
previous server inventory.

In this recipe, we first constructed our timestamped filename.

#specify folder and filename to be produced

$folder = "C:\Temp"

$currdate = Get-Date -Format "yyyy-MM-dd hmmtt"

$filename = "$(SinstanceName) DatabaseInventory $($currdate) .csv"
$fullpath = Join-Path $folder $filename

We then created an empty array where we can store our data:

$result = @()

122

Chapter 3

In the next step, we created a hash of values that we then stored back to our Sresult array.
The hash helps us create a nice tabular result that we can easily export into our CSV file.

foreach ($db in $server.Databases)

{

Sitem = S$null

#capture info you want to capture into a hash
#the hash will make it easier to export to CSV

$hash = @{

"DatabaseName" = $db.Name

"CreateDate" = $db.CreateDate

#other properties

"Users" = (($db.Users | Foreach {$_ .Name}) -join ", ")
"LastLogBackupDate" = $db.LastBackupDate

}

#icreate a new "row" and add to the results array
$item = New-Object PSObject -Property S$hash
$result += $item

}

We have explicitly identified the properties we want to record. Once done, your result should
look similar to this:

A B - D E F G H I 1 K L
DatabaseMame CreateDate Owner RecoveryN SizeMB DataSp IndexSp: Collation UserCount TableCountSPCount ViewCou
AdventureWor 11/27/2011 11:14 KERRIGAN Simple 266.9375 0.11 0.08 Latinl_General_ 5 74 1373 39
master 4/8/2003 9:13 sa Simple 9.5625 o 0 SQL_Latinl_Ger 7 6 1364 39
model 4/8/2003 9:13 sa Full 3.8125 o 0 5QL_Latinl_Ger 4 o 1362 39
msdb 6/24/2011 18:48 sa Simple 144375 0.01 0 SQL Latinl_Ger 8 137 1775 A7
ReportServer 1/8/2012 14:02 KERRIGAN Full 5.125 1] 0 Latinl_General, 5 34 1598 400
ReportServerTe 1/8/2012 14:02 KERRIGAN Simple 5.125 o 0 Latinl_General,] 13 1363 39
temp2 1/22/2012 21:14 KERRIGAN Full 3.828125 o 0 SQL_Latinl_Ger 4 o 1362 39
tempdb 1/16/2012 7:06 sa Simple 9 o 0 SQL Latinl_Ger 4 o 1362 395

A database has many properties that you may, or may not, want to capture in an inventory file.
We have picked a few properties here, but your situation and needs may be different, so adjust
this script as necessary.

» The Creating a SQL Server instance inventory recipe

Basic Administration

Listing installed hotfixes and service packs

In this recipe, we will check which service pack and hotfixes/patches are installed on our server.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. To list the version of SQL Server and Service Pack level, add the following script
and run:

#to get the version
#major.minor.build.buildminor

#this should tell you collectively at what
#level your install is
$server.Information.VersionString

#from MSDN

#version of SQL Server

#RTM = Original release version

#SPn = Service pack version

#CTP, = Community Technology Preview version
$server.Information.ProductLevel

#to get hotfixes/updates/patches, we can use

#the Get-Hotfix cmdlet

#Get-Hotfix wraps the WMI class Win32 QuickFixEngineering
#but this may miss some updates or properties,

#depending on your O0S

#this also does not include updates that are supplied by
#Microsoft Windows Installer (MSI)

Chapter 3

#get all hotfixes

#note the Get-Hotfix cmdlet does not list updates
#applied by MSI (Microsoft Installer)

Get-Hotfix

#icheck if a specific hotfix is installed
Get-Hotfix -Id "KB2620704"

The script for this task can be divided into two separate parts. The first part is a SQL Server
script that specifically allows us to check which version and service pack has been installed
in our instance.

The bit that gives us the service pack level is straightforward:

#version of SQL Server

#RTM = Original release version

#SPn = Service pack version

#CTP, = Community Technology Preview version
Sserver.Information.ProductLevel

The block that gives us the version string provides a bit more information than you might guess:

#to get the version
#major.minor.build.buildminor

#this should tell you collectively at what
#level your install is
$server.Information.VersionString

You may get a version such as 10.50.2796.0, which is SQL Server 2008 R2 (major and minor
version 10.50) with Service Pack 1 and Cumulative Update 4 (build number 2796.0). When
you install a hotfix or service pack, it should tell you what build your instance is going to be:

Cumulative update package 4 for SQL Server 2008 R2 Service Pack 1

| Hotfix Download Available
w’ View and request hotfix downloads
This article describes cumulative update package 4 for Microsoft SQL Server 2008 R2 Service Pack 1 (3P1). This

update contains hotfixes for issues that were fixed after the release of SQL Server 20058 R2 SPL.
Mote The build of this cumulative update package is known as build 10.50.2?96.0./

Basic Administration

The second part of the script is not SQL Server-specific. PowerShell has a cmdlet called
Get-Hotfix, which can query either the local or a remote machine for installed hotfixes.
Simply calling Get -Hot £ix will list all installed hotfixes, or you can also pass a specific
hotfix number (or KB Number) and it will query that specific item for you:

#check if a specific hotfix is installed
Get-Hotfix -Id "KB2620704"

Be aware that there is a documented limitation of Get -Hot fix. It is documented in MSDN
(http://msdn.microsoft.com/en-us/library/dd315358.aspx) as follows:

This cmdlet uses the Win32_QuickFixEngineering WMI class, which represents
small system-wide updates of the operating system. Starting with Windows Vista,
this class returns only the updates supplied by Component Based Servicing (CBS).
It does not include updates that are supplied by Microsoft Windows Installer (MSI)
or the Windows update site.

To get a complete picture of all updates, see Laerte Junior's
Simple-Talk article List updates, hotfixes, and Service Packs

with Simple Commands (http://www.simple-talk.com/
’ blogs/2011/09/08/1list-updates-hotfixes-and-

service-packs-with-simple-commands/).

There's more...

Some of the terms used in this recipe may be familiar to you, but only vaguely. In case they
are, let's define some of these terms. After all, you may hear them again and again in your
dealings with your network admin, system admin, or your DBA.

Terminology Description Cycle
RTM » Release to Manufacturing N/A

» Version of the product that is
released to the market

126

http://msdn.microsoft.com/en-us/library/dd315358.aspx
http://msdn.microsoft.com/en-us/library/dd315358.aspx
http://www.simple-talk.com/blogs/2011/09/08/list-updates-hotfixes-and-service-packs-with-simple-commands/
http://www.simple-talk.com/blogs/2011/09/08/list-updates-hotfixes-and-service-packs-with-simple-commands/
http://www.simple-talk.com/blogs/2011/09/08/list-updates-hotfixes-and-service-packs-with-simple-commands/

Chapter 3

Terminology

Description

Cycle

Hotfix

Cumulative
Update (CU)

Service pack

» Also referred to as Quick Fix
Engineering (QFE)

» Designed to address single or
isolated issues; usually on a per-client
basis

» Has to be specifically requested from
Microsoft, either through a support
call or from their site (https://
support .microsoft.com/
contactus/emailcontact.asp
x?scid=sw; $5BLN%5D;1422&WS
=hotfix)

» Distributed by Microsoft Customer

Service and Support (CSS) and
cannot be redistributed by clients

A package that contains a bundle of hotfixes
that have passed an acceptance criteria

Full regression test still not performed, and
should not be applied by all customers
According to Microsoft's official terminology
guide, it is defined as follows:

a tested, cumulative set of
all hotfixes, security updates,
critical updates, and update

N/A

Every 2
months

Every 12 to 18
months

Check out Microsoft's best practice guide on applying hotfixes and service packs here:

>

http://technet.microsoft.com/en-us/library/cc750077.
aspx#XSLTsectionl27121120120

Additional terminologies are explained here:

http://support.microsoft.com/kb/824684

There is also an unofficial guide to the SQL Server builds, which is quite
comprehensive. You can check it out at:

http://sglserverbuilds.blogspot.com/

https://support.microsoft.com/contactus/emailcontact.aspx?scid=sw;%5BLN%5D;1422&WS=hotfix
https://support.microsoft.com/contactus/emailcontact.aspx?scid=sw;%5BLN%5D;1422&WS=hotfix
https://support.microsoft.com/contactus/emailcontact.aspx?scid=sw;%5BLN%5D;1422&WS=hotfix
https://support.microsoft.com/contactus/emailcontact.aspx?scid=sw;%5BLN%5D;1422&WS=hotfix
https://support.microsoft.com/contactus/emailcontact.aspx?scid=sw;%5BLN%5D;1422&WS=hotfix
http://technet.microsoft.com/en-us/library/cc750077.aspx#XSLTsection127121120120
http://technet.microsoft.com/en-us/library/cc750077.aspx#XSLTsection127121120120
http://support.microsoft.com/kb/824684
http://sqlserverbuilds.blogspot.com/

Basic Administration

Listing running/blocking processes

This recipe lists processes in your SQL Server instance and their status.

Getting ready

In order to see blocking processes in your list, we will have to force some blocking queries.

Open SQL Server Management Studio. Connect to the instance you want to test. We will
assume you have AdventureWorks2008R2. If not, you can use a different database and
table altogether.

Open two new query windows for that connection. Type and run the following in the two
query windows:

USE AdventureWorks2008R2
GO

BEGIN TRAN
SELECT *

FROM dbo.ErrorLog
WITH (TABLOCKX)

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Run the following script to see all processes:

#List all processes
$server.EnumProcesses () |
Select Name, Spid, Command, Status, Login, Database, BlockingSpid

Format-Table -AutoSize

128

Chapter 3

You should see something similar to this:

Name Spid Command Status Login Database BlockingSpid
1 1 LOG WRITER background sa master 0
2 2 RECOVERY WRITER background sa master 0
3 3 RESQURCE MONITOR background sa master 0
4 4 XE TIMER background sa master 0
5 5 XE DISPATCHER background =a master 0
(3 & LAZY WRITER background sa master 0
7 7 LOCK MONITOR background sa master 0
8 8 SIGMAL HAMDLER background sa master 0
9 9 TASK MANAGER sleeping sa master 0
10 10 TASK MANAGER =leeping sa master 0
11 11 BRKR EVENT HNDLR background sa master 0
12 12 TASK MANAGER sleeping sa master 0
13 13 UNKNOWN TOKEN background sa master 0
14 14 BRKR TASK background sa master 0
15 15 BRKR TASK background sa master 0
16 16 TRACE QUEUE TASK background sa master 0

4. To list blocking processes, run the following code:

#List blocking Processes

#This assumes you already ran the SQL Script in the

#prep section to create the blocking processes

#Otherwise you may not see any results

#Note this is a V3 syntax because of the simplified

#Where syntax

$server.EnumProcesses () |

Where-Object BlockingSpid -ne 0 |

Select Name, Spid, Command, Status, Login, Database, BlockingSpid

Format-Table -AutoSize

Your result should show the blocking process you produced in the prep section:

Name Spid Command S5tatus Login Database Blocking5pid

63 63 SELECT suspended KERRIGAN‘Administrator AdventureWorks2008R2 62

The SMO server object has a method named EnumProcesses that simplifies the listing of
running processes in an instance. Once the SMO server object is instantiated, all you need
to invoke is the EnumProcesses method:

$server.EnumProcesses () |
Select Name, Spid, Command, Status, Login, Database, BlockingSpid |
Format-Table -AutoSize

Basic Administration

If you wish to display processes that are blocked, this command can be filtered to show
processes where the BlockingSpid is not zero, that is, blocked:

Where-Object BlockingSpid -ne 0 |

Note that this is a PowerShell V3 syntax because of the simplified use of the Where-Object
cmdlet. To use this in PowerShell V2, simply modify this line to use the curly braces {} and $_
special variable:

Where-Object {$_ .BlockingSpid -ne 0} |

There are a number of overloads for the EnumProcesses method. Without any parameter, it
returns all processes. Other overloads allow you to:

» List processes excluding system processes

» List information for a specific process ID

» List processes for a specific login

The result returned by EnumProcesses is similar to the information you get from the system
stored procedure sp_who2. The information includes the following;:

» Name
» Login
» Host

» Status

» Command
» Database
» Blocking SPID

» The Killing a blocking process recipe
» Learn more about the EnumProcesses method here:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
management . smo.server.enumprocesses (v=sgl.110) .aspx

130

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.server.enumprocesses(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.server.enumprocesses(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.server.enumprocesses(v=sql.110).aspx

Chapter 3

Killing a blocking process

This recipe illustrates how you can kill a blocking process in SQL Server.

Getting ready

In order to see blocking processes in your list, we will have to force some blocking queries. If you
have already done the prep work in the List running/blocking processes recipe, you do not need
to do this prep section. If you haven't, go ahead and perform this section:

Open SQL Server Management Studio. Connect to the instance you want to test. We will
assume you have AdventureWorks2008R2. If not, you can use a different database and
table altogether.

Open two new query windows for that connection. Type and run the following in the two
query windows:

USE AdventureWorks2008R2

GO

BEGIN TRAN
SELECT *

FROM dbo.ErrorLog
WITH (TABLOCKX)

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows

3.

PowerShell | Windows PowerShell ISE.

Import the SQL.PS module, and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Add the following script and run:

SVerbosePreference = "Continue"

#This assumes you already ran the SQL Script in the
#prep section to create the blocking processes

Basic Administration

#O0therwise you may not see any results
$server.EnumProcesses () |
Where-Object BlockingSpid -ne 0 |
ForEach-Object ({
Write-Verbose "Killing SPID $($_.BlockingSpid)™"
$server.KillProcess ($_.BlockingSpid)

SVerbosePreference = "SilentlyContinue"

To kill a blocking process in PowerShell using SMO simply requires the invocation of the
KillProcess method of the SMO Server class:

$server.KillProcess ($_.BlockingSpid)

However, this entails knowing which Process ID needs to be killed. In this recipe, we've also
identified—via scripting—which processes are blocking, and then killed them. Thus, we need
to identify all blocking processes:

$server.EnumProcesses () |

Where-Object BlockingSpid -ne 0 |

ForEach-Object ({
Write-Verbose "Killing SPID $($_.BlockingSpid)™"
$server.KillProcess ($_.BlockingSpid)

}

Once we've identified all blocking processes, we can kill the processes. In our recipe we also
display which process ID we are killing:

$server.EnumProcesses () |

Where-Object BlockingSpid -ne 0 |

ForEach-Object ({
Write-Verbose "Killing SPID $($_ .BlockingSpid)"
$server.KillProcess ($.BlockingSpid)

}

There's more...

We have all run into a situation where SQL Server is running a process that is out of control.
Perhaps it is a query missing a join or a process that is taking up too much memory. Using
scripting can reduce manual errors of accidentally killing a process that wasn't blocking, and
help with automating this task.

132

Chapter 3

Killing a process is a drastic measure. Use this script with caution.

» The Listing running/blocking processes recipe

Checking disk space usage

This recipe shows how to list disks available for your SQL Server instance, how much is used,
and how much is available.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the following script and run:

#get server list
Sgervers = @ ("KERRIGAN")

#this can come from a file instead of hardcoding
#the servers
#iservers = Get-Content <filenamex>

Get-WmiObject -ComputerName $servers -Class Win32 Volume |
Select @{N="Name";E={$.Name}},

@{N="DriveLetter";E={$.DrivelLetter}},

@{N="DeviceType";

E={switch ($_.DriveType)
{

{"Unknown"}
{"No Root Directory"}
{"Removable Disk"}
{"Local Disk"}
{"Network Drive"}
{"compact Disk"}
{vRAM")

O Ul b W NP O

Basic Administration

@{N="Size (GB)";E={"{0:N1}" -£(§_.Capacity/1GB)}},
@{N="FreeSpace (GB) ";E={"{0:N1}" -f($_.FreeSpace/1GB)}},
@{N="FreeSpacePercent";E={

if ($_.Capacity -gt 0)

{
"{0:P0O}" -f($_.FreeSpace/$.Capacity)
}
else
{
0
}

Format-Table -AutoSize

The result should look similar to the following screenshot:

Name DriveLetter DeviceType SizeGB FreeSpaceGB FreeSpacePercent
\\?\VoTlume{fa3bc650-0326-11el1-ab55-806e6T6e6963}\ Local Disk 0.10 0.07 71.87
c:\ C: Local Disk 79.90 33.55 41.98
D:\ D: Compact Disk 0.00 0.00 0

An essential task for a database administrator is to know how much disk the database server
is consuming. An automated script can help the administrator create an accurate profile of the
database server storage, and allows for scaling the system too.

For this recipe, we enlist the help of the Windows Management Instrumentation (WMI)
Win32 Volume class.

Get-WmiObject -ComputerName $servers -Class Win32 Volume

WMl is further discussed in the Listing SQL Server instances
s recipe in Chapter 2, SQL Server and PowerShell Basic Tasks.

Using WMI, we can list all the drives recognized on the target machine, including removable
drives, local hard drives, network disks, compact disks, and RAM disks.

Chapter 3

The win32 Volume WMI class, according to MSDN (http://msdn.microsoft.com/
en-us/library/windows/desktop/aa394515 (v=vs.85) .aspx), represents an
area of storage on a hard disk. The class returns local volumes that are either formatted,
unformatted, mounted, or offline.

We use Win32 Volume instead of Win32 LogicalDisk because:

» Win32 Volume does not manage floppy disk drives, and Win32 LogicalDisk
does. Since we're dealing with databases, we do not need the floppy disk drives.
Databases will not be stored in floppy disks.

» Win32 Volume enumerates all volumes, even those that do not have drive letters.
This is useful for databases that are stored in volume mount points.

For purposes of this recipe, we list all disks. In reality, you will most likely always filter the results
to show just the local and networked hard drives. In the script, once we capture the disks using
the win32 Volume class, we pipe the information to a Select or Select-Object cmdlet,
where we format our output. Note that formatting the output in the Select cmdlet will require
that we specify the hash, the Name, and the Expression:

Select @{Name="Name";Expression={$.Name}},
We can also shorten this by using N for Name and E for Expression:
Select @{N="Name";E={$.Name}},

Expressions can also accept some format specifiers, and we have used {0:N1} for single
decimal numeric values and {0:P0} for O decimal percent.

In the recipe we display each disk name, drive letter, device type, drive type, size in GB, free
space in GB, and percent free space.

Get-WmiObject -ComputerName $servers -Class Win32 Volume |
Select @{N="Name";E={$.Name}},

@{N="DriveLetter";E={$.DrivelLetter}},

@{N="DeviceType";

E={switch ($_.DriveType)
{

{"Unknown"}
{"No Root Directory"}
{"Removable Disk"}
{"Local Disk"}
{"Network Drive"}
{"Ccompact Disk"}
{vrAM")

O Ul b W N EHE O

http://msdn.microsoft.com/en-us/library/windows/desktop/aa394515(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394515(v=vs.85).aspx

Basic Administration

@{N="size (GB) ";E={"{0:N1}" -f($_.Capacity/1GB)}},
@{N="FreeSpace (GB) ";E={"{0:N1}" -f($_.FreeSpace/1GB)}},
@{N="FreeSpacePercent";E={

if ($_.Capacity -gt 0)

{

"{0:P0O}" -f($_.FreeSpace/$.Capacity)

Format-Table -AutoSize

See also

» Learn more about the Win32 Volume class from here:

http://msdn.microsoft.com/en-us/library/windows/desktop/
aa394515(v=vs.85) .aspx

» Learn more about Win32 LogicalDisk from here:

http://msdn.microsoft.com/en-us/library/windows/desktop/
aa394173 (v=vs.85) .aspx

» You can also check out the standard .NET format specifiers here:

http://msdn.microsoft.com/en-us/library/dwhawy9k (v=vs.110) .aspx

Setting up WMI Server event alerts

In this recipe, we will set up a simple WMI Server event alert for a DDL event.

Getting ready

We will set up an alert that creates a timestamped text file every time there is a DDL
Login event (CREATE, ALTER, or DROP). We will utilize the WMI provider for server
events in this exercise.

136

http://msdn.microsoft.com/en-us/library/windows/desktop/aa394515(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394515(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394173(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394173(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dwhawy9k(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dwhawy9k(v=vs.110).aspx

Chapter 3

These are the values you will need to know:

Item Value
Namespace (if using the root\Microsoft\SglServer\ServerEvents\
default instance) MSSQLServer
Namespace (if using a root\Microsoft\SglServer\ServerEvents\SQL01
named instance)
WMI query SELECT * FROM DDL_LOGIN_EVENTS
DDL_LOGIN_EVENTS SQLInstance
properties (partial list) LoginName

PostTime

SPID

ComputerName

LoginType

For WMI events hitting SQL Server, you will also need to ensure that SQL Server Broker is
running on your target database. In our case, we need to ensure that the Broker is running
on the msdb database.

SELECT

is_broker enabled, *
FROM

sys.databases
ORDER BY

name

Check the msdb database's is_broker enabled field in the result.

is_broker_enabled | name | database_id
0 | AdventureWorks2008R2 6

master

mode]
medb

Report Server

B R

Report ServerTempDE
tempdb

TestDE
TestDB_copy

o oo) T e e s | RS —
T T R R Y I R]

[T <3N S SR L% R =]

Basic Administration

If service broker is not running on msdb, run the following T-SQL statement from SQL Server
Management Studio:

ALTER DATABASE msdb
SET ENABLE BROKER

Alternatively, you can do this using PowerShell:

Sdatabase.BrokerEnabled = $true
Sdatabase.Alter ()

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the following script and run:

$namespace = "root\Microsoft\SglServer\ServerEvents\MSSQLSERVER"

#WQL for Login Events

#note we will capture CREATE, DROP, ALTER

#if you want to more specific, use these events
#DROP_LOGIN, CREATE_LOGIN, ALTER LOGIN

Squery = "SELECT * FROM DDL_LOGIN_EVENTS"

#register the event

#if the event is triggered, it will respond by
#creating a timestamped file containing event
#details
Register-WMIEvent
-Namespace $namespace
-Query Squery -Sourceldentifier "SQLLoginEvent"

<~

<~

<~

-Action
$date = Get-Date -Format "yyyy-MM-dd hmmtt"
$filename = "C:\Temp\LoginEvent-$ ($date) .txt"
New-Item -ItemType file $filename

Smsg = @"

DDL Login Event Occurred™n

PostTime: $(Sevent.SourceEventArgs.NewEvent.PostTime)
SQLInstance: $ (Sevent.SourceEventArgs.NewEvent.SQLInstance)
LoginType: $(Sevent.SourceEventArgs.NewEvent.LoginType)
LoginName: $(Sevent.SourceEventArgs.NewEvent.LoginName)

SID: S (Sevent . SourceEventArgs.NewEvent.SID)

SPID: $ (Sevent .SourceEventArgs.NewEvent .SPID)
TSQLCommand: $(Sevent.SourceEventArgs.NewEvent .TSQLCommand)
"@

Smsg | Out-File -FilePath $filename -Append

}

(
(
(
(

138

Chapter 3

3. Test fire a DDL event and check if the file gets created in response to the event:
1. Open SQL Server Management Studio.

2. Inanew query window, execute the following code. This will trigger the DDL
Login WMI event:

USE [master]

GO

CREATE LOGIN [eric]

WITH PASSWORD=N'P@ssword',
DEFAULT_DATABASE= [master],
CHECK_EXPIRATION=OFF,
CHECK_ POLICY=OFF

GO

3. Go to your Temp folder and check if there is a file created for the LoginEvent:

+ Computer - Local Digk {C:) ~ Temp -

Indudein library + Share with + New folder

Mame Date modified - Type

|| LoginEvent-2012-08-05_1236PM. txt 8/5/2012 12:36 PM Text Document

4. Openthe LoginEvent file to see the entries. Note that the T-SQL statement
we used to create the new login has been captured in this file.

ﬂ EditPlus - [C:\Temp\LoginEvent-2012-08-05_1236PM.bxt]
//‘ File Edit View Search Document Project Tools Browser Window Help

[1E d @ el & 2O x| o & & | A wlw|=2v|Ba@H| 2
e e e e S ettt Sttt Wttt it ittt Sttt ittt St et Sttt ittt Sttt et

DDL Login Event Occurred

PostTime: 20120805123644.000073+000

3QLInstance: MS3{LSERVER

LoginType: S5QL Login

LoginName: EKERRIGAN\Administrator

Pk

o

1 oo

SID: 11 103 44 141 26 71 &6 79 164 204 170 228 1 205 151 40

SPID: 59

TSQLCommand: <TSQLCommand»<SetOptions ANSI_NULLS="ON" BANSI NULL DEFAULT="ON" ANSI_FADDING="CN"
ENCEYFTED="FALSE"></SetOptionas><CormandIext TE LOGIN [eric] |e#x0D;e#x0A;WITH PASSWORD=Nzap

£#x00; s#x0A; DEFRULT DATABASE=[master], s=#x0D;s#x0R;CHECK EXPIRATION=OFF,
s#x00; s #x0A; CHECK POLICY=0FFa#x0D; e#x04;</CommandText><,/TSQLCommand >

Note that this is a fairly generic log. If you want to narrow it down to exactly which
login event has occurred, you can attach this to more specific events, such as
DROP LOGIN, CREATE LOGIN, and ALTER LOGIN.

Basic Administration

We are utilizing Windows Management Instrumentation (WMI) and WMI Query Language
(WQL) in this recipe. However, before we can put this into place, Service Broker has to be
enabled in your instance, as specified in the Getting Ready section. The Service Broker is
what the WMI provider uses to send the SQL Server instance events.

WMI is further discussed in the Listing SQL Server Instances
i recipe in Chapter 2, SQL Server and PowerShell Basic Tasks.

The first thing to identify is which namespace to use. For our purposes, because we want to
capture the SQL Server events from the default instance, our namespace will be:

$namespace = "root\Microsoft\SglServer\ServerEvents\MSSQLSERVER"

If you have a named instance, you simply have to replace MSSQLSERVER with the
instance name.

The next step is to identify which WQL query we need to capture the events on which we
want to be alerted. In our case, it is just DDL._LOGIN EVENTS. The other available events
that you can query are listed in MSDN's WMI Provider for Server Events Classes and
Properties article.

#WQL for Login Events

#note we will capture CREATE, DROP, ALTER

#if you want to more specific, use these events
#ROP_LOGIN, CREATE LOGIN, ALTER LOGIN

$query = "SELECT * FROM DDL LOGIN EVENTS"

Another way to explore the SQL Server WMI events is to use a tool similar to Marc van Orsouw's
(also known as The PowerShell Guy) PowerShell WMI Explorer (http://thepowershellguy.
com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-part-1.aspx):

140

http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-part-1.aspx
http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-part-1.aspx

Chapter 3

=T
File tools
[~ Cemputer [Status
KERRIGAN Connect Server: [KERRIGAN ~ NameSpace: |[ROOT\MicrosofiSqlS Classes - (434
Path - [\\IKERRIGAN\ROOT\Mi q \ServerEvents\MSSQLSERVER-DDL_LOGIN_EV
‘
- ROOT\Hardware | [Class ‘
~ROOTnterop Class : DDL_LOGIN_EVENTS] WmiPath

(- ROOT Microsoft
i~ ROOT\Microsoft\Home Net

Properties : 14

[w] ComputerName
] DefaultDatabase

£ ROOT\Microsoft\SalServer Methods : 0] DefsultLsnquags
. i ROOT\Microsoft\SqlServer\ComputerM Instances - | Loginhlame
- ROOT\Micrasoft*SqlServer'Report Serv vl LoginType
[=)- ROO T\Microsaft\SqlServer\ServerEver [w] ObjectName
i ~ ROOT\Microsoft\SqlServer\Serverl [w] ObjectType
ROOT\Microsoft\SalServer\Serverl + [w] PostTime
q » Get Instances [w] SECURITY_DESCRIPTOR
Hel
e P | instances | Methods |
[T Ti=] DDL_LOGIN_EVENTS ol
DDL_GDR_DATABASE_EVENTS [[Empty]
DDL_GDR_SERVER_EVENTS [__—
DDL_INDEX_EVENTS I DDL_LOGIN_EVENTS Properties -
DDL_LINKED_SERVER_EVENTS [_l (ComputerMame -
DDL_LINKED_SERVER_LOGIN_EVENTS [
DDL_LOGIN_EVENTS [DefaultDatabase -
DDL_MASTER_KEY_EVENTS [)
DDL_MESSAGE_EVENTS d
LI—I » DefaultLanguage -

Marc has provided instructions on his blog on how to use this tool, which is pretty
straightforward. Once you navigate to the ROOT\Microsoft\SqlServer\ServerEvents\
MSSQLSERVER namespace and the DDL_LOGIN_EVENTS class, the supported properties
and methods will be displayed on the right-hand pane.

After you finalize the namespace and WQL query, you need to register this as a WMI event.
When registering this event, we will specify an action section to create a timestamped log file
each time the event is triggered. This log file will contain event properties such as PostTime,
LoginType, LoginName, SID, SPID, and the T-SQL command that caused the event trigger
to fire.

Register-WMIEvent
-Namespace S$namespace

<~

-Query S$query -Sourceldentifier "SQLLoginEvent"

-Action {
$date = Get-Date -Format "yyyy-MM-dd hmmtt"
$filename = "C:\Temp\LoginEvent-$ ($date) .txt"

New-Item -ItemType file $filename

Smsg = @"

DDL Login Event Occurred™n

S (Ssevent.SourceEventArgs.NewEvent .PostTime)
SQLInstance: $(Sevent.SourceEventArgs.NewEvent.SQLInstance)
S (Sevent.SourceEventArgs.NewEvent . LoginType)

S (Sevent.SourceEventArgs.NewEvent . LoginName)

PostTime:

LoginType:
LoginName:

Basic Administration

SID: S (Sevent .SourceEventArgs.NewEvent .SID)

SPID: S (Sevent .SourceEventArgs.NewEvent . SPID)
TSQLCommand: $ (Sevent.SourceEventArgs.NewEvent.TSQLCommand)
n

@

$msg | Out-File -FilePath $filename -Append

}

The Register-WmiEvent cmdlet translates the query into SQL Server event notifications,
which are handled by the Service Broker.

To unregister the event, use the Unregister-Event cmdlet:
Unregister-Event "SQLLoginEvent"

One caveat about the Register-wWmiEvent cmdlet is that it's a temporarily registered event.
This means that it will go away if the program hosting it stops or the server gets restarted.

There's more...

The WMI Provider for Server Events Classes and Properties article can be found here:
http://msdn.microsoft.com/en-us/library/ms186449 (v=sgl.110) .aspx
To learn more about DDL event groups, check out MSDN:
http://msdn.microsoft.com/en-us/library/bb510452 (v=sgl.110) .aspx
Also check out the MSDN article on Understanding the WMI Provider for Server Events:
http://msdn.microsoft.com/en-us/library/ms181893 (v=sgql.110) .aspx

WMI Query Language (WQL) will become more and more important as you work with more
WMI events. There is an excellent free e-book provided by one of the prominent bloggers in
the PowerShell community, Ravikanth Chaganti. You can download his WQL e-book from:

http://www.ravichaganti.com/blog/?p=1979

One tool that can help you explore the WMI properties and events is Marc van Orsouw's
PowerShell WMI Explorer:

http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell -
wmi-explorer-part-1.aspx

142

http://msdn.microsoft.com/en-us/library/ms186449(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms186449(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/bb510452(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/bb510452(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms181893(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms181893(v=sql.110).aspx
http://www.ravichaganti.com/blog/?p=1979
http://www.ravichaganti.com/blog/?p=1979
http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-part-1.aspx
http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-part-1.aspx
http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-part-1.aspx

Chapter 3

Detaching a database

In this recipe we will detach a database programmatically.

Getting ready

For purposes of this recipe, let's create a database called TestDB. Open up SQL Server
Management Studio and run the following code:

CREATE DATABASE [TestDB]

CONTAINMENT = NONE

ON PRIMARY

(NAME = N'TestDB', FILENAME = N'C:\Program Files\Microsoft SQL
Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\TestDB.mdf' , SIZE = 4096KB ,
FILEGROWTH = 1024KB),

FILEGROUP [FG1]

(NAME = N'datal', FILENAME = N'C:\Program Files\Microsoft SQL Server)\
MSSQL11.MSSQLSERVER\MSSQL\DATA\datal.ndf' , SIZE = 4096KB , FILEGROWTH
= 1024KB),

FILEGROUP [FG2]

(NAME = N'data2', FILENAME = N'C:\Program Files\Microsoft SQL Server)\

MSSQL11.MSSQLSERVER\MSSQL\DATA\data2.ndf' , SIZE = 4096KB , FILEGROWTH
= 1024KB)

LOG ON

(NAME = N'TestDB log', FILENAME = N'C:\Program Files\Microsoft SQL
Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\TestDB log.ldf' , SIZE = 1024KB
, FILEGROWTH = 10%) B

GO

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Basic Administration

3. Add the following script and run:

Sdatabasename = "TestDB"

#parameters accepted are databasename, boolean
#flag for updatestatistics, and boolean flag

#for removeFulltextIndexFile

$server.DetachDatabase ($databasename, S$false, S$false)

Detaching a database programmatically is fairly straightforward. The DetachDatabase
method of the $server object accepts three parameters: database name and the
updateStatistics and removeFulltextIndexFile Boolean flags.

Sserver.DetachDatabase ($databasename, $false, $false)

There is another overload of the DetachDatabase method that accepts only two parameters:
database name and the updateStatistics flag.

Also note that there are settings that may prevent you from detaching your databases, such as:

» Insufficient privileges on the instance
» Database is being replicated
» Database has a snapshot

You can read the full documentation from MSDN:

http://msdn.microsoft.com/en-us/library/ms190794 .aspx

Capturing the mdf, ndf, and 1d4f information can be useful, especially if you plan to detach
the database and re-attach it right away to a different instance.

One way to get this information is by using the mdf file to extract all the other data and log
files that the detached database uses. You can supply the full mdf file path to two methods to
get all the information about the data and log files:

Sserver.EnumDetachedDatabaseFiles (Smdfname)
$server.EnumDetachedLogFiles ($Smdfname)

From the script, you can easily pass this information to your Attach Database script or
code block.

http://msdn.microsoft.com/en-us/library/ms190794.aspx
http://msdn.microsoft.com/en-us/library/ms190794.aspx

Chapter 3

See also

» The Attaching a database recipe

Attaching a database

In this recipe, we will programmatically attach a database with a primary data file (. mdf), log
file (. 1df), and multiple secondary data files (.ndf).

Getting ready

Before we can attach a database, we must have the data files and optional log files attached.
If you have not completed the Detaching a database recipe, perform the following steps:

1. When we attach the database, we will set QUERYWORKS\ jraynor as the owner.
This principal has been created with our development VM. Feel free to replace the
appropriate code with a login available with your system.

2. We will create a database called TestDB. Open up SQL Server Management Studio
and run the following code:

IF DB_ID('TestDB') IS NOT NULL
DROP DATABASE TestDB
GO

CREATE DATABASE [TestDBI]

CONTAINMENT = NONE

ON PRIMARY

(NAME = N'TestDB', FILENAME = N'C:\Program Files\Microsoft SQL

Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\TestDB.mdf' , SIZE = 4096KB
, FILEGROWTH = 1024KB),

FILEGROUP [FG1]
(NAME = N'datal', FILENAME = N'C:\Program Files\Microsoft SQL

Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\datal.ndf' , SIZE = 4096KB ,
FILEGROWTH = 1024KB),

FILEGROUP [FG2]
(NAME = N'data2', FILENAME = N'C:\Program Files\Microsoft SQL

Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\data2.ndf' , SIZE = 4096KB ,
FILEGROWTH = 1024KB)

LOG ON

(NAME = N'TestDB log', FILENAME = N'C:\Program Files\Microsoft
SQL Server\MSSQLll.MSSQLSERVER\MSSQL\DATA\TeStDB_lOg.ldf' , SIZE =
1024KB , FILEGROWTH = 10%)
GO

Basic Administration

3. Once you have this, go to your SSMS Object Explorer, right-click on TestDB and go to
Tasks | Detach:

o -
=5
|) Test New Database...

[Security MNew Query

H [Server C

¥l [Replicati Script Database as 3

- Manage'| Tasks] Take Offiine

[Integrat — 71

Fl L% SQL Ser Policies 5 Bring Online

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
$instanceName = "KERRIGAN"

Sserver = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

S$databasename = "TestDB"

#identify the primary data file
#this typically has the .mdf extension

$mdfname = "C:\Program Files\Microsoft SQL Server\MSSQL11l.
MSSQLSERVER\MSSQL\DATA\TestDB.mdf"

#FYI only
#view detached database info
$server.DetachedDatabaseInfo (Smdfname) | Format-Table

#tattachdatabase accepts a StringCollection, so we need
#to add our files in this collection

Sfilecoll = New-Object System.Collections.Specialized.
StringCollection

#add all data files

#this includes the primary data file
$server.EnumDetachedDatabaseFiles (Smdfname) |
Foreach-Object ({

146

Chapter 3

$filecoll.Add($)

}

#add all log files

$server.EnumDetachedLogFiles ($Smdfname) |
ForEach-Object ({
$filecoll.Add($)

Sowner = "QUERYWORKS\jraynor"
<#

http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management .smo.attachoptions.aspx

None There are no attach options. Value = 0.
EnableBroker Enables Service Broker . Value = 1.
NewBroker Creates a new Service Broker . Value = 2.

ErrorBrokerConversations Stops all current active Service Broker
conversations at the save point and issues

an error message. Value = 3.
RebuildLog Rebuilds the log. Value = 4.
#>

Sserver.AttachDatabase ($databasename, $filecoll, Sowner,
[Microsoft.SglServer.Management .Smo.AttachOptions] : :None)

Attaching a database requires a little bit more work compared to detaching a database. With
detaching a database, all you really need to know and supply is the instance details and the
database name.

With attaching a database, you will also need to supply, at minimum, all the files (primary data,
secondary data, and log) that the database used to use. You can attach a database without
supplying log files. SQL Server will recreate new log files for you. While log files are technically
"optional", it is best if you have preserved the log files in case this will be needed later on for
any point-in-time restore (applicable only to Bulk Logged and Full Recovery Model).

Backup and Restore are covered in Chapter 5, Advanced Administration.
s Recovery models Simple, Bulk Logged and Full are discussed in this chapter.

Basic Administration

Before we can attach the database, we need to identify the primary data file.

#identify the primary data file

#this typically has the .mdf extension

$mdfname = "C:\Program Files\Microsoft SQL Server\MSSQL11l.MSSQLSERVER\
MSSQL\DATA\TestDB.mdf"

Note that primary data files do not have to have the .mdf extension, although it is very typical
to preserve this extension.

We also need to create a StringCollection object that we will pass as parameter to the
AttachDatabase method of the SMO server object:

#attachdatabase accepts a StringCollection, so we need
#to add our files in this collection
$filecoll = New-Object System.Collections.Specialized.StringCollection

Once we have our primary data file path and our StringCollection object, we can start
adding all the files listed in the mdf header into our collection:

#add all data files
$server.EnumDetachedDatabaseFiles ($mdfname) |
Foreach-Object ({

sfilecoll.Add (S)

}

If you need to change the location of the files, you will need to replace the path before you add
the filename to the collection. For example:

Snewpath = "C:\Temp"
$server.EnumDetachedDatabaseFiles ($mdfname) |
Foreach-Object ({
Snewfile = Join-Path $newpath (Split-Path $_ -Leaf)
Sfilecoll.Add (Snewfile)

}
Ideally, you will also add all the logfile information:

$server.EnumDetachedLogFiles ($mdfname) |
ForEach-Object ({
$filecoll.Add ($)

}
You can also reset a few additional properties, including database owner:

Sowner = "QueryWorks\jraynor"

148

Chapter 3

When ready, you can invoke the AttachDatabase method:

Sserver.AttachDatabase ($databasename, $filecoll, Sowner, [Microsoft.
SglServer.Management .Smo.AttachOptions] : :None)

There are 5 attach options: None, EnableBroker, NewBrooker,
ErrorBrokerConversations, and RebuildLog. If you do not have the logfiles handy,
make sure to choose RebuildLog.

See also

» The Detaching a database recipe
» Read more about the AttachDatabase options here:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
management .smo.attachoptions (v=sgl.110) .aspx

Copying a database

In this recipe, we will look at how to copy a database using PowerShell and SMO.

Getting ready

In this recipe, we will assume you have the TestDB database already created from previous
recipes. If you do not have it, you can also substitute this with any database you already have
in your instance.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
$instanceName = "KERRIGAN"
Sserver = New-Object -TypeName Microsoft.SglServer.Management.Smo.

Server -ArgumentList $instanceName
3. Add the following script and run:

Sdatabasename = "TestDB"

$sourcedatabase = S$server.Databases [$Sdatabasename]

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.attachoptions(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.attachoptions(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.attachoptions(v=sql.110).aspx

Basic Administration

#Create a database to hold the copy of your database
$dbnamecopy = "$ ($databasename) copy"

$dbcopy = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Database -ArgumentList $server, $dbnamecopy
Sdbcopy.Create ()

#ineed to specify source database

#Use SMO Transfer Class

Stransfer = New-Object -TypeName Microsoft.SglServer.Management.
SMO.Transfer -ArgumentlList S$sourcedatabase
Stransfer.CopyAllTables = Strue
Stransfer.Options.WithDependencies = S$true
Stransfer.Options.ContinueScriptingOnError = S$true
Stransfer.DestinationDatabase = $dbnamecopy

Stransfer.DestinationServer = S$server.Name
Stransfer.DestinationLoginSecure = Strue
Stransfer.CopySchema = Strue

#if you want to only produce a script that will
#“copy” your database, use the ScriptTransfer method
Stransfer.ScriptTransfer ()

#if you want to perform the actual transfer
#you should use the TransferData method
Stransfer.TransferData ()

4. Check that the database has been created. Go to SQL Server Management
Studio and inspect the user databases in Object Explorer. You may need to
refresh Object Explorer:

Ohject Explarer » 0

Connect> & 30 @ °F E ;
= Lﬂ KERRIGAM (SOL Server 11.0, 1440 - KERRIGAM‘\Administra
= [Databases
1 System Databases
[Database Snapshots
|J Adventureworks2008R2
| J Reportserver
[_J ReportServerTempDB
J

| || TestDB_copy

[+ & FH H

Copying a database using SMO is made a lot simpler by the Microsoft.SglServer.
Management . SMO. Transfer class. To create a database copy, we first need to create
an empty database that will eventually hold the copied database:

150

Chapter 3

#Create a database to hold the copy of your database
$dbnamecopy = "$ ($databasename) copy"

$dbcopy = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Database -ArgumentList S$server, $dbnamecopy

$dbcopy.Create ()

We will then need to create an SMO Transfer class, which accepts the source database as
a parameter:

Stransfer = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Transfer -ArgumentList $sourcedatabase

In the transfer object, you can specify properties you want either brought over or excluded,
when the copy happens:

Stransfer.CopyAllTables = Strue
Stransfer.Options.WithDependencies = S$true
Stransfer.Options.ContinueScriptingOnError = S$true
Stransfer.DestinationDatabase = $dbnamecopy
Stransfer.DestinationServer = S$server.Name
Stransfer.DestinationLoginSecure = S$true
Stransfer.CopySchema = S$Strue

There is an option to just script out the transfer, if you wish to just generate the copy script.
You achieve this using the ScriptTransfer method:

#if you want to only produce a script that will
#“copy” your database, use the ScriptTransfer method
Stransfer.ScriptTransfer ()

When you are ready to bring the data and schema over, you can use the
TransferData method:

#if you want to perform the actual transfer
#you should use the TransferData method
Stransfer.TransferData ()

See also

» To learn more about the SMO Transfer class, check out the MSDN
documentation here:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
management .smo.transfer (v=sgl.110) .aspx

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.transfer(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.transfer(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.transfer(v=sql.110).aspx

Basic Administration

Executing a SQL query to multiple servers

This recipe executes a pre-defined SQL query to multiple SQL Server instances specified in a
text file.

Getting ready

In this recipe, we will connect to multiple SQL Server instances and execute a SQL command
against all of them.

Identify the available instances for you to run your query on. Once you have identified all
the instances you want to execute the command to, create a text file in C: \Temp called
sglinstances. txt and put each instance name line by line into that file. For example:

KERRIGAN
KERRIGAN\SQLO1

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

$instances = Get-content "C:\Temp\sglinstances.txt"

$query = "SELECT @@SERVERNAME 'SERVERNAME', @@VERSION 'VERSION'"
Sdatabasename = "master"
$instances |

ForEach-Object ({

$server = New-Object -TypeName Microsoft.SglServer.Management.
Smo.Server -ArgumentList $

Invoke-Sglcmd -ServerInstance $ -Database $databasename -Query
Squery

}

152

Chapter 3

In this script, we are leveraging the Invoke-Sglcmd cmdlet to accomplish our task.

We first get all the instances and temporarily store them in a variable. Note that you can
alternatively just pipe the results of the Get -Content cmdlet to the succeeding cmdlets
in the pipeline.

$instances = Get-content "C:\Temp\sglinstances.txt"

Next we just define the global query we want to execute and the database we want to execute
it against, regardless of the instance.

Squery = "SELECT @@SERVERNAME 'SERVERNAME', @@VERSION 'VERSION'"
Sdatabasename = "master"

The core of the recipe is iterating through all instances. For each instance, we create a new
SMO server object and use the Invoke-Sglcmd cmdlet to execute the query. Note that what
we are passing in the pipeline is the instance name, thus we need to referto itas s when we
create the SMO server object.

$instances |
ForEach-Object ({

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $

Invoke-Sglcmd -ServerInstance $ -Database $databasename -Query
$query

}

See also

» The Executing a Query/SQL script recipe in Chapter 2

Creating a filegroup

This recipe describes how to create a filegroup programmatically, using PowerShell and SMO.

Getting ready

We will add a filegroup called FGActive to your TestDB database.
In this recipe, this is the T-SQL equivalent of what we are trying to accomplish:

ALTER DATABASE [TestDB]
ADD FILEGROUP [FGActive]
GO

Basic Administration

How to do it...

These are the steps to add a filegroup to your database:
1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

Sdatabasename = "TestDB"
Sdatabase = S$server.Databases[$Sdatabasename]
S$fgname = "FGActive"

#For purposes of this test, we are going to drop this
#filegroup if it exists, so we can recreate it without
#any issues

if ($database.FileGroups [$fgname])

{

Sdatabase.FileGroups [$fgname] .Drop ()

#create the filegroup

$fg = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Filegroup -ArgumentList S$database, S$fgname

$fg.Create ()
4. Loginto Management Studio and confirm that the filegroup has been added:
a. Right-click on TestDB database and go to Properties.

b. On the left-hand pane, click on Filegroups. Check if the FGActive filegroup
is there.

Chapter 3

]
Selet:tapil_p % Serpt ~ [Help

%4 General

% Files Rows

=

14 Options MName I Files I Read-Only I Default

147 Change Tracking FRIMARY E 2
1 Pemissions FG1 1 r -
%: ﬁ-ﬁen-dEd Froperties G2 / 1 r r
& Mimoring .

_2,} Transaction Log Shipping FGActive 0 r r

Adding a filegroup can be accomplished with very little code, in PowerShell. This task entails
creating a Microsoft.SglServer.Management .SMO.Filegroup object and invoking
its Create method.

$fg = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Filegroup -ArgumentList S$database, $fgname
$fg.Create ()

If you want to make this filegroup the default filegroup, it will require adding data files to this
filegroup first.

Once data files are added, you can use the following block to make a filegroup default:

#imake sure there’s a data file before you set a
#filegroup default

#otherwise you will get an error

$fg = sdatabase.FileGroups [Sfgname]
$fg.IsDefault = Strue

$fg.Alter ()

See also

» The Adding secondary data files to a filegroup recipe

Basic Administration

Adding secondary data files to a filegroup

This recipe walks you through adding secondary data files to a filegroup using PowerShell
and SMO.

Getting ready

In this recipe, we will add data files to the FGActive filegroup we created for the TestDB
database in the previous recipe. If you don't have this filegroup yet, execute the following
T-SQL statement in Management Studio to create the filegroup:

ALTER DATABASE [TestDB]
ADD FILEGROUP [FGActive]
GO

In this recipe, we will accomplish this T-SQL equivalent:

ALTER DATABASE [TestDB]

ADD FILE (

NAME = N'datafilel’,

FILENAME = N'C:\Temp\datafilel.ndf')
TO FILEGROUP [FGActive]

elo}

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the sQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.

Server -ArgumentList $instanceName
3. Add the following script and run:

Sdatabasename = "TestDB"
$fgname = "FGActive"

156

Chapter 3

$fg = Sdatabase.FileGroups [$fgname]

#Define a DataFile object on the file group and set the logical
#file name.

$df = New-Object -TypeName Microsoft.SglServer.Management.SMO.
DataFile -ArgumentList $fg, "datafilel"

#Make sure to have a directory created to hold the designated data
#file
$df .FileName = "c:\\Temp\\datafilel.ndf"

#Call the Create method to create the data file on the instance of

#SQL Server.
sdf .Create ()

You will first need to get a handle to the filegroup to which you want to add the secondary file:

$fg = S$database.FileGroups [$fgname]

Once the filegroup handle is in place, you can create a Microsoft.SglServer.
Management .SMO.DataFile object and specify the logical filename:

#Define a DataFile object on the file group and set the logical file
#name

$df = New-Object -TypeName Microsoft.SglServer.Management.SMO.DataFile
-ArgumentList $fg, "datafilel"

#Make sure to have a directory created to hold the designated data
#file
$df .FileName = "c:\\Temp\\datafilel.ndf"

The last step is to invoke the Create method of the DataFile object:

#Call the Create method to create the data file on the instance of SQL
#Server.

$df.Create ()

See also

» The Creating a filegroup recipe

Basic Administration

Moving an index to a different filegroup

This recipe illustrates how to move indexes to a different filegroup.

Getting ready

Using the TestDB database, or any database of your choice, let's create a table called Student
with a clustered primary key.

Open SQL Server Management Studio, and execute the following code:

USE TestDB

GO

-- this is going to be stored to the default filegroup
IF OBJECT ID('Student') IS NOT NULL

DROP TABLE Student

GO

CREATE TABLE Student

(

ID INT IDENTITY(1,1) NOT NULL,

FName VARCHAR (50),

CONSTRAINT [PK Student] PRIMARY KEY CLUSTERED
([ID] ASC)

)

GO

-- insert some sample data

-- nothing fancy, every student will be called Joe for now :)
INSERT INTO Student (FName)

VALUES ('Joe")

GO 20

INSERT INTO Student (FName)

SELECT FName FROM Student

GO 10

-- check how many records are inserted
-- this should give 20480
SELECT COUNT (*) FROM Student

The T-SQL equivalent of what we are trying to accomplish in this recipe is as follows:

CREATE UNIQUE CLUSTERED INDEX PK Student
ON dbo.Student
(

ID ASC

158

Chapter 3

)

WITH (DROP_EXI STING=ON, ONLINE=ON)
ON FGStudent

GO

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

Sdatabasename = "TestDB"
Sdatabase = S$server.Databases[$Sdatabasename]
Stablename = "Student"

Stable = Sdatabase.Tables[Stablename]

#now move to a different filegroup
$fgname = "FGStudent"

if ($database.FileGroups [$fgname])

{

Sdatabase.FileGroups [$fgname] .Drop ()

$fg = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Filegroup -ArgumentList S$database, S$fgname

$fg.Create ()

$fg = $database.FileGroups [$fgname]

#icreate a datafile and specify the filename

$df = New-Object -TypeName Microsoft.SglServer.Management.SMO.

DataFile -ArgumentList $fg, "studentdata"

$df .FileName = "c:\\Temp\\studentdata.ndf"

Basic Administration

#icreate the datafile
$df.Create ()

#now let's recreate the clustered index

(Microsoft.SglServer.Management . Smo.Index)

#onto the new filegroup

#note this is V3 syntax because of simplified Where-Object
Sclusteredindex = Stable.Indexes |

Where-Object IsClustered -eqg S$true

$clusteredindex.FileGroup = $fgname
Sclusteredindex.Recreate ()

#display which filegroup the table is on now
Stable.Refresh ()
Stable.FileGroup

Your indexes might outgrow your initial space allocation for them, or you may want to place
them into a different disk purely for performance reasons. There will be a number of reasons
to move your indexes to a different filegroup, and the good news is that PowerShell and SMO
can accomplish this task.

For purposes of our exercise, the first few steps are creating a filegroup called FGStudent
and adding a secondary data file into the new filegroup.

See the Creating a filegroup and Adding secondary data files
i to a filegroup recipes for additional information.

For this recipe, we will be moving our clustered index into a different filegroup. We need to
capture the clustered index. The following code implicitly creates a Microsoft.SglServer.
Management . Smo. Index object. Here we use the V3 syntax:

$clusteredindex = Stable.Indexes |
Where-Object IsClustered -eq S$true

If you want to do this in a V2 environment, you have to change the Where-Object clause:

$clusteredindex = Stable.Indexes |
Where-Object {$_ .IsClustered -eq Strue}

160

Chapter 3

After you get a handle to the clustered index, you will need to specify the new filegroup this
clustered index should belong to:

Sclusteredindex.FileGroup = $fgname

Once you've specified the filegroup, you can invoke the Recreate method of the Microsoft.
SglServer.Management . Smo . Index object. Note that we are recreating the index—not
simply creating it—because the index already exists. The Recreate method is equivalent to
CREATE. ..WITH DROP EXISTING.

Sclusteredindex.Recreate ()
To check, you can refresh the table and see which filegroup the index is attached to:

#display which filegroup the table is on now
Stable.Refresh()
Stable.FileGroup

To move nonclustered indexes to a different filegroup, you will follow the same method
described in the previous recipe. Here's an example:

$idxname = S$table.Indexes["idxname"]
$idxname.FileGroup = $fgname
$idxname.Recreate ()
$idxname.Refresh ()
$idxname.FileGroup

If you are dealing with a clustered index that is not a primary key, you can also consider the
DropAndMove method of the Microsoft.SglServer.Management . Smo . Index object.
This method drops the clustered index and recreates it in the specified filegroup.

$idxname .DropAndMove ($fgname)

» The Creating a filegroup recipe
» The Adding secondary data files to a filegroup recipe

» The Creating an index recipe

Basic Administration

Checking index fragmentation

In this recipe, we will look at the steps to display index fragmentation using SMO
and PowerShell.

Getting ready

We will investigate the index fragmentation of the Person . Person table in the
AdventureWorks2008R2 database.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking;

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

Sdatabasename = "AdventureWorks2008R2"
Sdatabase = $server.Databases [$databasename]

StableName = "Person"
S$gchemaName = "Person"

$table = $database.Tables |
Where Schema -Like $schemaName
Where Name -Like $tableName

#From MSDN:
#EnumFragmentation enumerates a list of
#fragmentation information for the index
#using the default fast fragmentation option.
$table.Indexes |
Foreach ({

$.EnumFragmentation() |

162

Chapter 3

Select Index Name, @{Name="Value";Expression={($
AverageFragmentation) .ToString ("0.0000") }}

I

Format-Table -AutoSize

The result you see should look similar to the one shown in the following screenshot:

Index_Mame Value

AK_Person_rowguid
1dxLastMameFirstMame
IX_Person_LastName_FirstMame_Midd]eMame
PK_Person_BusinessEntityID
PK_Person_BusinessEntityID
PK_Person_BusinessEntityID
PXML_Person_AddContact
PXML_Person_Demographics
X¥MLPATH_Ferson_Demographics
¥MLPATH_Person_Demographics
¥MLPROPERTY_Person_Demographics
¥MLPROPERTY_Person_Demographics
¥MLVALUE_Person_Demoaraphics
¥MLVALUE_Person_Demographics

The SMO Index class contains the EnumFragmentation method for the Microsoft.
SglServer.Management . Smo. Index object. This object can enumerate fragmentation
of indexes in a table.

PRPPRRPRRPENDE
=
=
=1
=1

You can invoke the EnumFragmentation method against all indexes in a table. This method
provides the following information:

Index_Name
Index_ID

Depth

Pages

Rows
MinimumRecordsize
MaximumRecordsize
AverageRecordsize
ForwardedRecords
AveragePagelensity
IndexType
PartitionMumber
GhostRows
VersionGhostRows
AwverageFragmentation

Basic Administration

In the script, we looped through all the indexes and invoked EnumFragmentation. We are
displaying only the index name and AverageFragmentation property (formatted to display
four decimal places):

$table.Indexes |

Foreach ({

$.EnumFragmentation() |

select Index Name, @{Name="Value";Expression={($
AverageFragmentation) .ToString ("0.0000") }}

I

Format-Table -AutoSize

» The Reorganizing/rebuilding an index recipe

» You can read more on the EnumFragmentation method of the Microsoft.
SglServer.Management . Smo. Index object from MSDN:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
management . smo.index.enumfragmentation(v=sgql.110) .aspx

Reorganizing/rebuilding an index

This recipe demonstrates how to reorganize or rebuild an index.

Getting ready

We will iterate through all the indexes in the Person. Person table in the
AdventureWorks2008R2 database, for this exercise.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
S$instanceName = "KERRIGAN"

S$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.index.enumfragmentation(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.index.enumfragmentation(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.index.enumfragmentation(v=sql.110).aspx

Chapter 3

3. Add the following script and run:

SVerbosePreference = "Continue"
Sdatabasename = "AdventureWorks2008R2"
Sdatabase = $server.Databases [$databasename]

StableName = "Person"
SgchemaName = "Person'

$table = $database.Tables |
Where Schema -Like $schemaName
Where Name -Like $tableName

#From MSDN:
#EnumFragmentation enumerates a list of
#fragmentation information
#for the index using the default fast fragmentation option.
$table.Indexes |
ForEach-Object ({
$.EnumFragmentation() |
ForEach-Object {
Sitem = $_
#reorganize if 10 and 30% fragmentation

if ($item.AverageFragmentation -ge 10 -and

Sitem.AverageFragmentation -le 30 -and
$item.Pages -ge 1000)

Write-Verbose "Reorganizing $index.Name ... "
$index.Reorganize ()
}
#rebuild if more than 30%
elseif ($item.AverageFragmentation -gt 30 -and
Sitem.Pages -ge 1000)

Write-Verbose "Rebuilding $index.Name ... "
Sindex.Rebuild()

SVerbosePreference = "SilentlyContinue"

Basic Administration

The EnumFragmentation method allows additional information about indexes to be
extracted—like average fragmentation and number of pages. Instead of just blindly rebuilding
or reorganizing all indexes, we can check these properties and put more smarts as to when
the indexes need to be reorganized or rebuilt, if at all.

These are the rules of thumb:

» If fragmentation > 30 percent and pages >= 1000, rebuild

» If fragmentation is between 10 percent and 30 percent and
pages >= 1000, reorganize

1,000 pages for the index page count is more of a guideline (documented in articles and
discussed in conferences; check out an old Index Defragmentation Best Practices White
Paper that discusses this http://technet .microsoft.com/library/Cc966523).

| personally have used this number in a benchmarking exercise and it worked well in that
environment. Test this on your system; you may find that the number of pages that work
for you are a little bit higher or a little bit lower.

To do this conditional rebuild/reorganize strategy in PowerShell, you can use an if/else
statement to divert the action to the correct code block depending on the fragmentation
and page values:

#reorganize if 10 and 30% fragmentation
if ($item.AverageFragmentation -ge 10 -and ~

Sitem.AverageFragmentation -le 30 -and
Sitem.Pages -ge 1000)

Write-Verbose "Reorganizing $index.Name ... "
$index.Reorganize ()

}

#irebuild if more than 30%

elseif ($item.AverageFragmentation -gt 30 -and

$item.Pages -ge 1000)

Write-Verbose "Rebuilding $index.Name ... "
Sindex.Rebuild ()

}

See also

» The Checking index fragmentation recipe

166

Chapter 3

Running DBCC commands

This recipe shows you some of the DBCC commands that can be run using PowerShell.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName
3. Some DBCC commands are built into SMO, so you can just call the methods:
Sdatabasename = "AdventureWorks2008R2"
Sdatabase = S$server.Databases[$Sdatabasename]
#RepairType Values: AllowDatalost, Fast, None, Rebuild

Sdatabase.CheckTables ([Microsoft.SglServer.Management . Smo.
RepairType] : :None)

Not all DBCC commands are wrapped in SMO methods. Some of the available methods on a
database level are:

» CheckAllocations
» CheckCatalog
» CheckTables

To invoke the SMO DBCC methods, you need to get a handle to the database.
The CheckTables method requires a parameter for RepairType:

#RepairType Values: AllowDatalost, Fast, None, Rebuild

Sdatabase.CheckTables ([Microsoft.SglServer.Management.Smo.
RepairType] : :None)

For other DBCC commands that are not nicely wrapped in methods, you can still execute
them using the Invoke-Sglcmd cmdlet. For example:

Squery = "DBCC SHRINKFILE (TestDB Log)"
Invoke-Sglcmd -ServerInstance SinstanceName -Query S$Squery

Basic Administration

Setting up Database Mail

This recipe demonstrates how to set up Database Mail programmatically, using PowerShell.

Getting ready

The assumption in this recipe is that database mail is not yet configured on your instance.

These are the settings we will use for this recipe:

Setting Value

Mail Server mail.queryworks.local

Mail Server Port 25

Email Address for Database Mail Profile dbmailequeryworks.local

SMTP Authentication Basic authentication

Credentials for Email Address Username: dbmailequeryworks.local
Password: <somepassword>

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

#enable DatabaseMail

#this is similar to an sp_configure TSQL command
$server.Configuration.DatabaseMailEnabled.ConfigValue = 1
Sserver.Configuration.Alter ()

$Sserver.Refresh()

168

Chapter 3

#set up account

SaccountName = "DBMail"

SaccountDescription = "QUERYWORKS Database Mail"
$displayName = "QUERYWORKS mail"

SemailAddress = "dbmail@queryworks.local"
SreplyToAddress = "dbmail@queryworks.local"
SmailServerAddress = "mail.queryworks.local"

Saccount = New-Object -TypeName Microsoft.SglServer.Management.
SMO.Mail.MailAccount -ArgumentlList S$server.Mail, S$accountName,
SaccountDescription, $displayName, S$emailAddress

Saccount .ReplyToAddress = SreplyToAddress
$account.Create ()
4. Check the settings that have been changed from SQL Server Management Studio:
1. Open SQL Server Management Studio.
2. Expand the Management node.
3. Right-click on Database Mail and choose Configure Database Mail.

= 4 Management

3 Availability Groups
':Q Data-tier Applications
L# Policy Management

71 Data Collection

53] Resource Gowvernar
Eill Extended Events

[Maintenance Plans
[SQL Server Logs

[+

+

1;
= |
¥ Distributed Ti Configure Database Mail
L Legacy Send Test E-Mail...
[Integration Servi]]
=) I_% SOL Server Agen View Database Mail Log
= L3 Jobs _ Reports 3
@ syspolicy
@ test Refresh
[58 Test Job =

Basic Administration

4. Inthe Select Configuration Task window, select the Manage Database Mail
accounts and profiles radio button.

h Database Mail Configuration Wizard - KERRIGAN

Select Configuration Task
Select setup or maintenance tasks.

If you are instaling Database Mail for the first time, select the setup option.

% Set up Database Mail by performing the following tasks:
1. Create a new e-mail profile and specify its SMTFP accounts
2 Specify profile security
3. Configure system parameters

" Manage Database Mail accourts and profiles

™ Manage profile security

™ View or change system parameters

5. Inthe Manage Profiles and Accounts window, select the View, change,
or delete an existing account option.

E Database Mail Configuration Wizard - KERRIGAN

Manage Profiles and Accounts
Specify the task to perfom.

Select a management Task:
" Create a new account
%" View, change, or delete an existing account

i~ Create a new profile

™ View, change, or delete an existing profile. You can also manage accounts associated with the profile

170

Chapter 3

6. Visually check the Manage Existing Account page. See what settings
have been saved from executing your PowerShell script. Notice that in

the SMTP authentication section, Anonymous Authentication has

been selected by default.

B= Database Mail Configuration Wizard - KERRIGAN =]
Manage Exasting Account |
Choose the account to view, change, or delete.
Accourt name: DEMail x| | Delete
Description: QUERYWORKS Database Mail
Outgoing mail server (SMTP)
E-mail address: dbmail @quenworks local
Display name: QUERYWORKS mail
Reply e-mail: dbmail @quenyworks local
Server name: KERRIGAN Port number: I25

[This server requires a secure connection (S5L)

SMTP Authentication

" Windows Authentication using Database Engine service credentials

{" Basic authentication

User name:

Pazswaord:

Confirm password:

{* Anomymous authertication

5. Click on Cancel to exit the wizard and go back to PowerShell ISE.
6. Add the following script and run:

#default mail server that was saved in the previous script
#was the server name, we need to change this to the
#appropriate mail server

Smailserver = Saccount.MailServers [$instanceName]
Smailserver.Rename (SmailServerAddress)

Smailserver.Alter ()

#default SMTP authentication is Anonymous Authentication
#set propert authentication

Smailserver.SetAccount ("dbmail@queryworks.local", "some password")

Smailserver.Port = 25
Smailserver.Alter ()

Basic Administration

7. Check the Manage Existing Account window from Management Studio again.
Check if these new settings have been saved.

i Database Mail Configuration Wizard - KERRIGAN ;IEI_
Manage Exasting Account

Choose the account to view, change, or delete.

Account name: &
Description: GUERYWORKS Database Mail
COutgoing mail server (SMTP)
E-mail address: dbmail @quenworks local
Display name: QUERYWORKS mail
Rephy e-mail: dbmail @quenyworks local
Server name: mail. quenyworks local Port number: |25—

[~ This server requires a secure connection (S5L)

SMTP Authentication

" Windows Authentication using Database Engine service credentials

¥ Basic authentication

User name: dbmail @quenyworks local

[P—

Paszsword:
Confirm password:

[P—

" Anonymous authentication

8. Click on Cancel to exit the wizard and go back to PowerShell ISE.
9. Add the following script and run:

#create a profile
SprofileName = "DB Mail Profile"
SprofileDescription= "DB Mail Description"

if (SmailProfile)

{

$mailProfile.Drop ()

172

Chapter 3

SmailProfile = New-Object -TypeName Microsoft.SglServer.
Management .SMO.Mail .MailProfile -ArgumentlList S$server.Mail,
SprofileName, S$SprofileDescription

SmailProfile.Create ()
SmailProfile.Refresh ()

10. Check the settings from SQL Server Management Studio.

1. Go back to the Manage Profiles and Accounts window, but this time select
View, change, or delete an existing profile.

2. Visually check the Manage Existing Profile page. Notice that, apart from the
name and description, the window is still fairly empty.

E Database Mail Configuration Wizard - KERRIGAN 10| 3
Manage Exasting Profile .
Select the profile to view, change or delete.

Profile name: | DB Mail Profile =] Delee |

Description: DB Mail Description ;I

A profile may be associated with multiple SMTP accounts. i an accourt fails while sending an e-mail, the profile uses the next

account in the priorty list. Specify the accounts associated with the profile, and move the accounts to set the failover priority.

SMTP accourts:

Priarity | Account Name | E-mail Address | Add...
Remove
Maove Up
Move Down

11. Click on Cancel to exit the wizard and go back to your PowerShell ISE.

12. Add the following script and run:

#add account to the profile
SmailProfile.AddAccount (SaccountName, 0)
SmailProfile.AddPrincipal ('public', 1)
SmailProfile.Alter ()

Basic Administration

13. Check the settings from SQL Server Management Studio:

1. Go back to the Manage Profiles and Accounts window, but this time select
View, change, or delete an existing profile.

2. Visually check the Manage Profile Security page. Notice the default profile
that has been saved.

i Database Mail Configuration Wizard - KERRIGAN -0

Manage Profile Security
Specify database users or roles that have access to profiles.

Public: Profiles | Private Profiles |

A public profile can be accessed by all users of any mail-host database.

Select public profiles. You can also specify the default public profile.

Public I Profile Name Default Profile
™ DB Mail Profile Yes
14. Click on Cancel to exit the wizard and go back to your PowerShell ISE.

15.

16.

Add the following script and run:

#link this mail profile to SQL Server Agent
$Sserver.JobServer.AgentMailType = 'DatabaseMail'
$server.JobServer.DatabaseMailProfile = $profileName
$server.JobServer.Alter ()

#restart SQL Server Agent

$managedComputer = New-Object 'Microsoft.SglServer.Management.Smo.
Wmi .ManagedComputer' S$instanceName

$servicename = "SQLSERVERAGENT"

$service = $managedComputer.Services [$servicename]
$Sservice.Stop ()

$service.Start ()

Check settings from Management Studio:
1. Right-click on SQL Server Agent and go to Properties.
2. Click on Alert System from the left-hand pane.

Chapter 3

3. Check the settings. The Enable mail profile option should be checked.

E 50L Server Agent Properties - KERRIGAN
Selecta page 8 Seript ~ [Help

A General

_ﬁﬁ a Mail session

_gli Job System I¥ Enable mail profile

g ﬁi::;:rction Mail system: IDatabase Mail j

N Mail profile: [DB Mail Profile |
|| Save copies of the sent messages in the Sent fems folder

17. Manually test sending an e-mail. Right-click on Database Mail and choose Send
Test E-mail, as shown in the following screenshot:

[50L Server Logs |I

L';
HE|
¥ Distributed Ti Configure Database Mail

[Legacy Send Test E-Mail,, Mli—

1 Integration Servi
Iﬁ) SQL Server Agen View Database Mail Log

= 3 Jobs
. Reports 3
syspolicy i
test Refresh
[53] Test Ioh -

18. Check your mail client to see if you have received the e-mail.

%, Inbox - dbmail@queryworks.local |] Q. | -
Bt * Qs = % 8 9 0
= Trash
& Outhox 't | %] @] subject | =] From | @[pate - ||
‘&?j'hm“@que - test « dbmail © 1/14/2012 415 ...
&4 1nbox (1) . : Database Mail Test QUERYWORKS mail * 1/14/2012 11:00...
[# Database Mail Test © QUERYWORKS.. ° 12:46PM |
M Sent
1 Trash
4[| jraynor@queryworks.local
(# Inbox (5)
1/ Trash

Basic Administration

Database Mail is a feature introduced in SQL Server 2005 that simplifies the sending of e-mails
from your SQL Server instance. With Database Mail, you can set up:

» Accounts: These store the e-mail accounts and associated credentials that Database
Mail can use to send e-mails.

» Profiles: These can store multiple accounts. If an account in a profile fails, the next
one in the queue will be used.

Database Mail is a disabled service by default. To start using it, you first need to enable it.

#enable DatabaseMail

#this is similar to an sp configure TSQL command
$server.Configuration.DatabaseMailEnabled.ConfigValue = 1
$server.Configuration.Alter ()

The previous statement is equivalent to the following T-SQL statement:

EXEC sp configure 'Database Mail XPs', 1
GO

RECONFIGURE

GO

To continue with setting up Database Mail, you need to set up an account first:

#set up account

SaccountName = "DBMail"

SaccountDescription = "QUERYWORKS Database Mail"
$displayName = "QUERYWORKS mail"

SemailAddress = "dbmail@queryworks.local"
SreplyToAddress = "dbmail@queryworks.local"
SmailServerAddress = "mail.queryworks.local"

Saccount = New-Object -TypeName Microsoft.SglServer.Management.
SMO.Mail.MailAccount -ArgumentList S$server.Mail, S$accountName,
SaccountDescription, $displayName, S$emailAddress

Saccount .ReplyToAddress = SreplyToAddress
Saccount.Create ()

176

Chapter 3

The next step is to create a profile:

SmailProfile = New-Object -TypeName Microsoft.SglServer.Management.
SMO.Mail.MailProfile -ArgumentList S$server.Mail, S$profileName,
SprofileDescription;

SmailProfile.Create()
SmailProfile.Refresh()

Once both the account(s) and profile are set up, you need to add the accounts to the mail profile:

#add account to the profile
SmailProfile.AddAccount ($accountName, O0)
SmailProfile.AddPrincipal ('public', 1)
SmailProfile.Alter ()

A big reason to set up Database Mail is to use this with SQL Server Agent. If this is not set up,
SQL Server Agent will not be able to alert operators for a job via e-mail. Setting up the alert for
SQL Server Agent is a key step and is often missed.

#link this mail profile to SQL Server Agent
$server.JobServer.AgentMailType = 'DatabaseMail'
$server.JobServer.DatabaseMailProfile = $profileName
$server.JobServer.Alter ()

Once the Database Mail profile is hooked to SQL Server Agent, you also need to restart the
server before you can start using it.

In the development server, I've used hMailServer as my mail server. hMailServer (http://
www.hmailserver.com/) is a free e-mail server for machines running on Windows operating
systems. hMailServer supports IMAP, SMTP and POP3.

I needed to install a mail server in my Windows Server 2008 R2 VM because Windows Server
2008 and 2008 R2 no longer come with a POP3 server, which can be used to demonstrate or
test e-mail capabilities. Windows Server 2003 used to come with this service.

http://www.hmailserver.com/

Basic Administration

Listing SQL Server jobs

This recipe illustrates how to list SQL Server jobs using PowerShell.

Getting ready

Do a visual check of the SQL Server jobs in your instance. These should be the jobs you will
see after you run the script in this recipe:

= Iﬁ) SQL Server Agent
= 3 Jobs
% syspolicy_purge_history
(2@ Integrity Chedk
E Clean Up Temp
4 Job Activity Monitor

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList S$instanceName

3. Add the following script and run:

Sjobs=$Sserver.JobServer.Jobs

$jobs |

Select Name, OwnerLoginName, LastRunDate, LastRunOutcome
Sort -Property Name |

Format-Table -AutoSize

178

Chapter 3

Listing SQL Server jobs is a short, simple task in PowerShell. To list the jobs, you first need to
get a handle to the JobServer.Jobs object:

$jobs=$server.JobServer.Jobs

Once you have the jobs, you can query the properties you are interested in:

$jobs |

Select Name, OwnerLoginName, LastRunDate, LastRunOutcome |

Sort -Property Name |

Format-Table -AutoSize

Each Job object exposes a variety of information about the job. Here is a sample of the
complete output from a single job:

Parent
Category
CategoryType

CurrentRunRetryAttempt

CurrentRunStatus
CurrentRunStep
DateCreated
DateLastModified
DeleteLevel
Description
EmailLevel
EventLogLevel
HasSchedule
HasServer
HasStep
IsEnabled

JobID

JobType
LastRunDate
LastRunOutcome
NetSendLevel
NextRunDate
NextRunScheduleID

[KERRIGAN]
[Uncategorized (Local)]l]
1

0

Idle

0 (unknown)

1/15/2012 4:30:58 PM
1/26/2012 8:58:30 PM
Never

No description available.
OnFailure

OnFailure

True

True

True

True
90888lad-ad98-42f7-813a-52b93853b1d2
Local

1/27/2012 11:30:00 PM
Succeeded

Never

1/30/2012 12:00:00 AM
37

Basic Administration

OperatorToEmail : jraynor
OperatorToNetSend :
OperatorToPage :
OriginatingServer : KERRIGAN

OwnerLoginName : KERRIGAN\Administrator

PageLevel : Never

StartStepID : 1

VersionNumber : 23

Name : Sample Job

CategoryID : 0

JobSteps : {Step 1}

JobSchedules : {Every 3rd Friday 6AM, Every Monthend 1130PM,

Every Monthend 1130PM 2, Every Monthend 1130PM 2...}

Urn : Server [@Name='KERRIGAN'] /JobServer/Job[@
Name='Test Job' and @CategoryID='0"']

Properties : {Name=Category/Type=System.String/Writable=True/
Value=[Uncategorized (Local)], Name=CategoryID/Type=System.Int32/
Writable=True/Value=0,

Name=CategoryType/Type=System.Byte/
Writable=True/Value=1, Name=CurrentRunRetryAttempt/Type=System.Int32/
Writable=False/Value=0...}

UserData :

If you want to list only the failed jobs using PowerShell V3, pipe the results and filter for
LastRunOutcome of Failed:

$jobs=$server.JobServer.Jobs
$jobs |
Where LastRunOutcome -Like "Failed" |

Select Name, OwnerLoginName, LastRunDate, LastRunOutcome
Format-Table -AutoSize

On a V2 environment, you can use the following Where-0Object syntax:

Where {$.LastRunOutcome -Like "Failed"} |

See also

» The Creating a SQL Server job recipe
» You can learn more about the SQL Server Job class from here:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
management .smo.agent.job (v=sgl.110) .aspx

180

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.job(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.job(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.job(v=sql.110).aspx

Chapter 3

Adding a SQL Server operator

This recipe shows how you can create a SQL Server operator using SMO and PowerShell

Getting ready

For this recipe, we will create an operator with the following settings:

Setting Value
Operator name jraynor
Operator e-mail jraynor@equeryworks.local

If you do not have this account set up in your system, you can substitute this with another
available account in your environment.

To set up an operator, you must be a sysadmin in your instance.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows

3.

PowerShell | Windows PowerShell ISE.
Import the SQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Add the following script and run:

$jobserver = $server.JobServer
SoperatorName = "jraynor"

<] jray
SoperatorEmail = "jraynor@queryworks.local"

Soperator = New-Object Microsoft.SglServer.Management.Smo.Agent.
Operator -ArgumentList S$jobserver, SoperatorName

Soperator.EmailAddress = $SoperatorEmail
Soperator.Create ()

#verify by listing operators
$jobserver.Operators

Basic Administration

4. Open SQL Server Management Studio and check if the operator has been created.
Expand SQL Server Agent | Operators.

= L% S0L Server Agent
L:l
4] Job Activity Monitor
[Alerts
= [Operators
ﬁ jrayrar

To create an operator, you must first get a handle to the JobServer object of your instance:
$jobserver = $server.JobServer

An operator will require a name, and a method to be contacted. We are going to use e-mail in
this case, but you can also specify the NetSendAddress and PagerAddress properties of
the Microsoft.SglServer.Management . Smo.Agent .Operator object:

SoperatorName = "jraynor"
SoperatorEmail = "jraynor@queryworks.local"

Soperator = New-Object Microsoft.SglServer.Management.Smo.Agent.
Operator -ArgumentList S$jobserver, SoperatorName

Soperator.EmailAddress = $SoperatorEmail

Once these settings are in place, you can just invoke the Create method of the
Microsoft.SglServer.Management .Smo.Agent .Operator object to persist
the operator in the instance:

Soperator.Create ()

» The Creating a SQL Server job recipe
» The Adding a SQL Server agent alert recipe
» To learn more about the SQL Server Operator class, check out the MSDN entry:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
management . smo.agent .operator (v=SQL.110)

182

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.operator(v=SQL.110)
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.operator(v=SQL.110)
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.operator(v=SQL.110)

Chapter 3

Creating a SQL Server job

In this recipe, we will create a simple SQL Server job programmatically.

Getting ready

We are going to create a simple job called Test Job, and set up jraynor as our operator. If
you don't have jraynor, choose another SQL Server operator that's available in your instance.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

$jobName = "Test Job"

if ($server.JobServer.Jobs [$jobName])

{

$server.JobServer.Jobs [$jobName] .Drop ()

$job = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Agent.Job -ArgumentList $server.JobServer, S$jobName

#Specify which operator to inform and the completion action.
SoperatorName = "jraynor"

Soperator = $server.JobServer.Operators [$SoperatorName]
$job.OperatorToEmail = S$operator.Name

#CompletionAction can be Never, OnSuccess, OnFailure, Always
$job.Emaillevel = [Microsoft.SglServer.Management.SMO.Agent.
CompletionAction] : :OnFailure

Basic Administration

#create
$job.Create ()

#apply to local instance of SQL Server
$job.ApplyToTargetServer ($instanceName)

#inow let's add a simple T-SQL Job Step

$jobStep = New-Object Microsoft.SglServer.Management.Smo.Agent.
JobStep ($job, "Test Job Step")

$jobStep.Subsystem = [Microsoft.SglServer.Management.Smo.Agent.
AgentSubSystem] : : TransactSqgl

$jobStep.Command = "SELECT GETDATE ()"

$jobStep.OnSuccessAction = [Microsoft.SglServer.Management.Smo.
Agent .StepCompletionAction] : :QuitWithSuccess

$jobStep.OnFailAction = [Microsoft.SglServer.Management.Smo.Agent.
StepCompletionAction] : :QuitWithFailure
$jobStep.Create ()

4. Use SQL Server Management Studio to check if this job has been created:

= [SQL Server Agent
= 3 Jobs
syspolicy_purge_history
est Job *—"
Integrity Check
Clean Up Temp
4] Job Activity Monitor

5. Go to Steps and you should see the T-SQL step we added:

Job Properties - Test Job ;Iglﬂh
Selei:tanam 8 Script ~ [Help
g“ General

= Job step list:
28 Schedules

2 Merts 5t... | Name | Type | On Success | On Failure |

?‘: Motffications 1 | Transact-50L scipt (T-5GL) Quitthej.. Quitthejob...
% Targets -

184

Chapter 3

6. Go to Notifications and you should see that jraynor was added as the operator to
receive the e-mail notifications:

b Properties - Test Job =0l >
Selectapay: S Script - ﬁ Help
|25 General
Steps Actions to perform when the job completes:
Schedules
Alerts ¥ Email: Ijlﬁ‘.-'ﬂf’f | IWhenthejobfaiIs |
[~ Page: | j I".".u'henthejobfails j
[T Met send: I j I".".u'hen the job fails j
¥ Wite to the Windows Application evert log: IWhen the job fails j
[T Auctomatically delete job: I".'-.u'hen the job succesds j

To create a Job programmatically, first create a Microsoft.SglServer.Management.
SMO . Agent . Job object:

$job = New-Object -TypeName Microsoft.SglServer.Management.SMO.Agent.
Job -ArgumentList $server.JobServer, "Test Job"

Next, specify the operator. This is an optional step.

#Specify which operator to inform and the completion action.
SoperatorName = "jraynor"

Soperator = $server.JobServer.Operators[SoperatorName]
$job.OperatorToEmail = Soperator.Name

For the notification, you can select either by e-mail, net send, or pager. You will also need to
specify when the alert should happen. This can be either Never, OnSuccess, OnFailure,
or Always.

$job.Emaillevel = [Microsoft.SglServer.Management.SMO.Agent.
CompletionAction] : :OnFailure

When ready, invoke the Create method of the Microsoft.SqglServer.Management.
SMO . Agent . Job object.

We also need to specify the target server; in our case, just the local instance of
SQL Server:

$job.ApplyToTargetServer ($SinstanceName)

Basic Administration
In this recipe we also add a simple job step:

#now let's add a simple T-SQL Job Step
$jobStep = New-Object Microsoft.SglServer.Management.Smo.Agent.
JobStep ($job, "Test Job Step")

We can create different types of job steps in SQL Server, and these are defined in PowerShell
as an AgentSubSystem enumeration. The possible values for this Microsoft.SglServer.
Management . Smo.Agent . AgentSubSystem enumeration are:

» TransactSqgl

» ActiveScripting

» CmdExec

» Snapshot

» LogReader

» Distribution

» Merge

» QueueReader

» AnalysisQuery

» AnalysisCommand

» Ssis

» PowerShell

For our simple step, we will use a T-SQL subsystem. We will also attach a simple T-SQL
statement to this step to retrieve the current system date as a command:

$jobStep.Subsystem = [Microsoft.SglServer.Management.Smo.Agent.
AgentSubSystem] : : TransactSqgl
$jobStep.Command = "SELECT GETDATE ()"

We can also define the failure and completion actions:

$jobStep.OnSuccessAction = [Microsoft.SglServer.Management.Smo.Agent.
StepCompletionAction] : :QuitWithSuccess

$jobStep.OnFailAction = [Microsoft.SglServer.Management.Smo.Agent.
StepCompletionAction] : :QuitWithFailure

When ready, we can create the job step by invoking the Create method of the Microsoft.
SglServer.Management .Smo.Agent . JobStep object:

$jobStep.Create ()

186

Chapter 3

See also

» The Listing SQL Server jobs recipe
» The Creating a SQL Server operator recipe

» Check out MSDN for the Microsoft.SglServer.Management . Smo.Agent .
AgentSubSystem enumeration:

http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management . smo.agent .agentsubsystem. aspx

Adding a SQL Server event alert

This recipe walks you through the steps in adding a SQL Server event alert.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
$instanceName = "KERRIGAN"

Sserver = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

Sjobserver = $server.JobServer
#for purposes of our exercise, we will drop this
#talert if it already exists

Salertname = "Test Alert"
Salert = $jobserver.Alerts[Salertname]
if ($alert)

{

Salert.Drop ()

}

#faccepts a JobServer and an alert name

Salert = New-Object Microsoft.SglServer.Management.Smo.Agent.
Alert S$jobserver, "Test Alert"

Salert.Severity = 10

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.agentsubsystem.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.agentsubsystem.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.agentsubsystem.aspx

Basic Administration

#Raise Alert when Message contains
Salert.EventDescriptionKeyword = "failed"

#Set notification message
Salert.NotificationMessage = "This is a test alert, dont worry"

Salert.Create ()

To create an alert, you will first need to create a Microsoft.SglServer.Management .
Smo.Agent .Alert object:

Salert = New-Object Microsoft.SglServer.Management.Smo.Agent.Alert
$jobserver, "Test Alert"

This alert, by default, is a SQLServerEvent alert type. For this alert event type, we will need
to specify either error number or severity. You can also optionally specify a keyword that can
trigger this notification:

Salert.Severity = 10

#Raise Alert when Message contains
Salert.EventDescriptionKeyword = "failed"

Other options for the alert type are: SglServerPerformanceCondition,
NonSglServerEvent, and WmiEvent. The AlertType property is a read-only property.
To choose an event alert type, you will need to set the properties required for that alert type.
For example, if you want to create a WmiEvent alert, you will need to set the values for
WmiEventNamespace and WmiEventQuery.

Once the alert settings have been provided, you can also add a notification message:
Salert.NotificationMessage = "This is a test alert, dont worry"

To create the alert, just invoke the Create method of the Microsoft.SglServer.
Management .Smo.Agent .Alert object:

Salert.Create ()

There's more...

SQL Server provides a mechanism to alert DBAs and other database staff of possible issues
or thresholds reached by the instances. If you navigate to SQL Server Agent and expand
Alerts, you should see all the alerts set up in your instance.

188

Chapter 3

When you first set up a SQL Server Agent alert, you will be shown the New Alert window:

SBIBclapage % Scipt ~ [Help

1 Genersl

1 Response _

Options Name:
Type:

Event alert defintion [

v Enable

SQL Server performance condition alert

Database name; [WM! event E"E':t
Alerts will be raised based on:

" Emor number: I'I

¥ Severty: I[H}1 - Mizcellaneous System Information

[T Raise alert when message contains:

Message text: I

This table summarizes the types of alerts you can set up in SQL Server:

Alert type

Description

SQL Server event alert

SQL Server performance
condition alert

WMI event alert

Typically used for specific error numbers,
severity, or keywords that exist in the error
message.

Typically set up if a performance threshold is
reached. For example, if data file size exceeds
100 GB.

Used for WMI events that you want to flag
within SQL Server. For example, if you want to
monitor if a file gets created, or a deadlock is
detected in one of the instances.

To learn more about the Alert class, check out the MSDN documentation here:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
management .smo.agent.alert (v=sgl.110) .aspx

» The Setting up WMI events recipe

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.alert(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.alert(v=sql.110).aspx

Basic Administration

Running a SQL Server job

This recipe demonstrates how you can run a SQL Server job programmatically.

Getting ready

In this recipe, we assume you have a job in your development environment called Test Job
that you can run. If not, pick another job in your system that you can run.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE

2. Import the sQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

$jobserver = $server.JobServer
$jobname ="Test Job"

$job = $jobserver.Jobs [$jobname]
$job.Start ()

#sleep to wait for job to finish
#icheck last run date
Start-Sleep-sl

$job.Refresh ()

$job.LastRunDate

190

Chapter 3

The first step is to get a handle to your instance's JobServer object.

$Sjobserver = $server.JobServer
$jobname = "Test Job"

You also need to specify the name of the job you want to run. Once you get a handle to the
name, you can just invoke the Start method of the JobServer.Job object:

$job = $jobserver.Jobs [$jobname]
$job.Start ()

If you want to start your job at a specified step, you can pass in the job step name to the
Start method.

To check if it recently ran, you can check the LastRunDate:

#sleep to wait for job to finish
#icheck last run date

Start-Sleep -s 1

$job.Refresh ()

$job.LastRunDate

An alternative way to check is to go to SQL Server Management Studio. Go to that job, right-
click on it, and select View Job History. The window that will appear should show a history of
the times this job has been run, including the job run status.

Log File Viewer - KERRIGAN

[/LoadLog [Export “FFilter ... @ Search... St
Job Higtory

[JClean Up Temp Log file summary: Mo filter applied _
[Integrity Check Date * I% I Server | Job Name |

[syspolicy_purge_hista| (| v 1/28/2012 3:25:11 PM KERRIGAN Test Job

Test Job v 1/27/2012 11:30:00 PM KERRIGAN = Test Job
[5GL Server Agent v 1/27/2012 11:00:00 PM KERRIGAN = Test Job
[Database Mai v 1/27/2012 10:30:00 FM KERRIGAN = Test Job

See also

» The Scheduling a SQL Server job recipe

Basic Administration

Scheduling a SQL Server job

In this recipe, we will demonstrate how to schedule a SQL Server job using PowerShell and SMO.

Getting ready

In this recipe, we assume you have a job in your development environment called Test Job
that you can run. If not, pick another job in your system that you can run.

We will schedule this job to run every weekend night at 10 P.M.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module and create a new SMO Server object, as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

$jobserver = $server.JobServer
$jobname = "Test Job"

$job = $jobserver.Jobs [$jobname]

$jobschedule = New-Object -TypeName Microsoft.SglServer.
Management . SMO.Agent .JobSchedule -ArgumentList $job, "Every
Weekend Night 10PM"

#Values for FrequencyTypes are:

#AutoStart, Daily, Monthly, MonthlyRelative, OneTime,

#0nIdle, Unknown, Weekly

$jobschedule.FrequencyTypes = [Microsoft.SglServer.Management.
SMO.Agent . FrequencyTypes] : :Weekly

<#

#from MSDN:
#These are the list of FrequencyInterval values

192

Chapter 3

I
Jun

WeekDays.Sunday

I
N

WeekDays .Monday
WeekDays.Tuesday = 4
WeekDays.Wednesday = 8
WeekDays.Thursday = 16
WeekDays.Friday = 32

WeekDays.Saturday = 64
WeekDays.WeekDays = 62
WeekDays.WeekEnds = 65
WeekDays.EveryDay = 127

Combine values using an OR logical operator to set more than a
single day.

For example, combine WeekDays.Monday andWeekDays.Friday
(FrequencyInterval = 2 + 32 = 34) to schedule an activity for
Monday and Friday.

#>

#tevery Saturday and Sunday
#can also use 65

$jobschedule.FrequencyInterval = [Microsoft.SglServer.Management.
SMO.Agent .WeekDays] : : WeekEnds

#set time

#3 parameters - hours, mins, days

#if we don't specify time, it will start at midnight

$starttime = New-Object -TypeName TimeSpan -ArgumentList 22, 0, 0
$jobschedule.ActiveStartTimeOfDay = $starttime

#frequency of recurrence
$jobschedule.FrequencyRecurrenceFactor = 1
$jobschedule.ActiveStartDate = "01/01/2012"

#Create the job schedule on the instance of SQL Agent.
$jobschedule.Create ()
Check the schedule from SQL Server Management Studio:

1. Go to Management Studio.

2. Under SQL Server Agent, double-click on Test Job.

Basic Administration

3. Click on Schedules on the left-hand side pane. Confirm that the schedule
has been created.

Schedule list:

D I Name I Enabled I Description

35 Every Weekend Might 10PM Yes Oeeours every week on Saturday, Sunday at 10:00:00 PM.

To schedule a job, you first need to get a handle to the job you are scheduling:
$job = $jobserver.Jobs [$jobname]

The next step is to create a Microsoft.SglServer.Management . SMO.Agent .
JobSchedule object. You need to pass the job object and the name of the schedule.

$jobschedule = New-Object -TypeName Microsoft.SglServer.Management.
SMO.Agent .JobSchedule -ArgumentList $job, "Every Weekend Night 10PM"

For this recipe, we wanted to schedule it every Saturday and Sunday at 10 P.M. The settings
that need to be set are:

» FrequencyTypes

» Frequencyinterval

» ActiveStartTimeOfDay

» FrequencyRecurrenceFactor

» ActiveStartDate

You will notice that depending on the schedule you want to set, you may need to skip some of
these settings, but need to set different properties altogether.

[More scheduling examples are provided in the There's more... section.]

Because the schedule happens every week, we need to set the FrequencyType to Weekly:

$Sjobschedule.FrequencyTypes = [Microsoft.SglServer.Management.SMO.
Agent .FrequencyTypes] : :Weekly

Chapter 3

Different values available for FrequencyTypes are: AutoStart, Daily, Monthly,
MonthlyRelative, OneTime, OnIdle, Unknown, and Weekly

For FrequencyInterval, we need to set the value to every weekend:

#every Saturday and Sunday

#can also use 65

$jobschedule.FrequencyInterval = [Microsoft.SglServer.Management.SMO.
Agent .WeekDays] : : WeekEnds

Note that valid FrequencyInterval values are as follows:

Frequencylinterval Value Notes

WeekDays .Sunday 1 20

WeekDays .Monday 2 21

WeekDays .Tuesday 4 22

WeekDays .Wednesday 8 28

WeekDays . Thursday 16 24

WeekDays.Friday 32 25

WeekDays.Saturday 64 26

WeekDays .WeekDays 62 Monday + Tuesday + ... + Friday
WeekDays .WeekEnds 65 Saturday + Sunday
WeekDays .EveryDay 127 Sunday + Monday + ... + Saturday

As documented in MSDN, should you decide to mix and match the days, you will have to use
a logical OR to get the value. For example, if you want to schedule a job for Wednesday (8)
and Thursday (16), the value you assign to FrequencyInterval should be 8+16 = 24.

To specify that the job needs to run at 10 P.M., we need to use a TimeSpan object, which
accepts three parameters for hour, minute, and second:

Sstarttime = New-Object -TypeName TimeSpan -ArgumentList 22, 0, 0
Sjobschedule.ActiveStartTimeOfDay = $starttime

To set the start date, we need to set the ActiveStartDate property of the
JobSchedule object:

$jobschedule.ActiveStartDate = "01/01/2012"

Basic Administration

The FrequencyRecurrenceFactor property specifies how often in this time period should
the job run. In this case, only once:

#frequency of recurrence
$jobschedule.FrequencyRecurrenceFactor = 1

The last piece is to invoke the Create method:

#Create the job schedule on the instance of SQL Agent.
Sjobschedule.Create()

There are various possible schedules that you may need to set up for jobs in your instance.
Here are a few more samples, with different variations, to get you started:

Schedule PowerShell code to set up a schedule

Every $jobschedule.FrequencyTypes = [Microsoft.
weekend at SglServer.Management .SMO.Agent.

10 P.M. FrequencyTypes] : :Weekly

#every Saturday and Sunday

$jobschedule.FrequencyInterval = [Microsoft.
SglServer.Management .SMO.Agent .WeekDays] : : WeekEnds

#10PM

S$starttime = New-Object -TypeName TimeSpan
-ArgumentList 22, 0, 0

$jobschedule.ActiveStartTimeOfDay = $starttime
$jobschedule.FrequencyRecurrenceFactor = 1

196

Chapter 3

Schedule PowerShell code to set up a schedule
Every half $jobschedule.FrequencyTypes = [Microsoft.
hour between SglServer.Management .SMO.Agent.
8A.M.and 4 FrequencyTypes] : :Weekly
P.M. on each
weekday <#
WeekDays.Sunday =
WeekDays.Monday = 2
WeekDays.Tuesday = 4
WeekDays.Wednesday = 8
WeekDays.Thursday = 16
WeekDays.Friday = 32
WeekDays.Saturday = 64
WeekDays .WeekDays = 62
WeekDays .WeekEnds = 65
WeekDays .EveryDay = 127
#>

#every weekday
$jobschedule.FrequencyInterval = 62

#every half hour

$jobschedule.FrequencySubDayTypes =
[Microsoft.SglServer.Management .SMO.Agent .
FrequencySubDayTypes] : :Minute
$jobschedule.FrequencySubDayInterval = 30

$jobschedule.ActiveStartDate = "01/01/2012"
#from 8-4
$starttime = New-Object -TypeName TimeSpan

-ArgumentList 8, 0, O
$jobschedule.ActiveStartTimeOfDay =
Sendtime = New-Object -TypeName TimeSpan
-ArgumentList 16, 0, O

$jobschedule.ActiveEndTimeOfDay =

Sstarttime

Sendtime

Basic Administration

Schedule PowerShell code to set up a schedule

At 11:30 P.M. $jobschedule.FrequencyTypes = [Microsoft.

on the last SglServer.Management .SMO.Agent . FrequencyTypes] : :
day of every MonthlyRelative

month

$jobschedule.FrequencyRelativeIntervals =
[Microsoft.SglServer.Management .SMO.Agent . Frequenc
yRelativeIntervals] ::Last

#month end can fall any day, so we'll have

#to set interval to everyday
$jobschedule.FrequencyInterval = [Microsoft.
SglServer.Management .SMO.Agent .MonthlyRelativeWeek
Days] : :EveryDay

$jobschedule.FrequencyRecurrenceFactor = 1
$jobschedule.ActiveStartDate = "01/01/2012"

#start at 11:30 PM
#3 params - hours, mins, days

$starttime = New-Object -TypeName TimeSpan
-ArgumentList 23, 30, 0

$jobschedule.ActiveStartTimeOfDay = $starttime

198

Chapter 3

Schedule

PowerShell code to set up a schedule

At noon on
every Tuesday
and Thursday

$jobschedule.FrequencyTypes = [Microsoft.
SglServer.Management .SMO.Agent.

FrequencyTypes] : :Weekly

<#

WeekDays.Sunday =
WeekDays.Monday = 2
WeekDays.Tuesday = 4
WeekDays.Wednesday = 8

WeekDays.Thursday = 16
Friday = 32
Saturday =
.WeekDays =
.WeekEnds =

.EveryDay =

WeekDays.
64
62
65
127

WeekDays.
WeekDays
WeekDays
WeekDays
#>

#every Tuesday and Thursday
#Tuesday = 4, 16 so 20
$jobschedule.FrequencyInterval =

Thursday =
20

$jobschedule.FrequencyRecurrenceFactor = 1
$jobschedule.ActiveStartDate = "01/01/2012"

#noon

#3 params - hours, mins, days
$starttime = New-Object -TypeName TimeSpan
-ArgumentList 12, 00, O

$jobschedule.ActiveStartTimeOfDay = $ starttime

Basic Administration

Schedule PowerShell code to set up a schedule

At 6 A.M. on $jobschedule.FrequencyTypes = [Microsoft.

every 3rd SglServer.Management . SMO.Agent . FrequencyTypes] : :Mo

Friday of the nthlyRelative

month
$jobschedule.FrequencyRelativeIntervals =
[Microsoft.SglServer.Management .SMO.Agent . Frequenc
yRelativeIntervals] ::Third
$jobschedule.FrequencyInterval = [Microsoft.
SglServer.Management .SMO.Agent .MonthlyRelativeWeek
Days] : :Friday
$jobschedule.FrequencyRecurrenceFactor = 1
$jobschedule.ActiveStartDate = "01/01/2012"
#start at 10:30 PM
$starttime = New-Object -TypeName TimeSpan
-ArgumentList 6, 00, O
$jobschedule.ActiveStartTimeOfDay = $starttime

At 11 P.M. $jobschedule.FrequencyTypes = [Microsoft.

on every last SglServer.Management .SMO.Agent . FrequencyTypes] : :Mo

Thursday of nthlyRelative

the month
$jobschedule.FrequencyRelativeIntervals =
[Microsoft.SglServer.Management .SMO.Agent . Frequenc
yRelativeIntervals]::Last
$jobschedule.FrequencyInterval = [Microsoft.
SglServer.Management .SMO.Agent .MonthlyRelativeWeek
Days] : : Thursday
$jobschedule.FrequencyRecurrenceFactor = 1
$jobschedule.ActiveStartDate = "01/01/2012"
#11PM
Sstarttime = New-Object -TypeName TimeSpan
-ArgumentList 23, 00, 0
$Sjobschedule.ActiveStartTimeOfDay = $starttime

200

Chapter 3

Check out FrequencyTypes from the following URL:

http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management . smo.agent . frequencytypes.aspx

Frequency interval documentation can be found here:

http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management . smo.agent . jobschedule. frequencyinterval (v=sgl.110) .aspx

See also

» The Listing SQL Server jobs recipe
» The Creating a SQL Server job recipe
» The Running a SQL Server job recipe

201

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.frequencytypes.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.frequencytypes.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.frequencytypes.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.jobschedule.frequencyinterval(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.jobschedule.frequencyinterval(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.jobschedule.frequencyinterval(v=sql.110).aspx

Security

In this chapter, we will cover:

» Listing SQL Server service accounts

» Changing SQL Server service account

» Listing authentication modes

» Changing authentication mode

» Listing SQL Server log errors

» Listing failed login attempts

» Listing logins, users, and database mappings
» Listing login/user roles and permissions
» Creating a login

» Assigning permissions and roles to a login
» Creating a database user

» Assigning permissions to a database user
» Creating a database role

» Fixing orphaned users

» Creating a credential

» Creating a proxy

Introduction

PowerShell can help database administrators and developers to automate security tasks.
Whether you need to monitor repeated failed login attempts by parsing out event logs, or
manage roles and permissions, especially if the number of users in the system is very large,
PowerShell can help you deliver. This chapter will show you the classes and snippets of scripts
that will help you manage your SQL Server logins and database users programmatically.

Security

Listing SQL Server service accounts

We will list service accounts in this recipe.

How to do it...

These are the steps to listing SQL Server service accounts:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

#ireplace KERRIGAN with your instance name
SinstanceName = "KERRIGAN"

$managedComputer = New-Object 'Microsoft.SglServer.Management.Smo.
Wmi .ManagedComputer' S$instanceName

#list services

$managedComputer.Services |

Select Name, ServiceAccount, DisplayName, ServiceState |
Format-Table -AutoSize

Name SerwviceAccount DisplayName :
MsDtsServerll0 QUERYWORKS sqlservice SQL Server Integration Services 1
M55QLSSQLOL NT Service\M550L$50L01 SQL Server (SQLOL)
MSSQLFDLauncher NT Service\MSSOQLFDLauncher SQL Full-text Filter Daemon Launc
M5SQLFDLauncher$5QLOL NT Service‘\MSSQLFDLauncher$5QLOL SQL Full-text Filter Daemon Launc
M55QLSERVER QUERYWORKSYsqlservice SQL Server (MSSQLSERVER)
M550LServerOLAPService QUERYWORKS \=qlservice SQL Serwver Analysis Services (MSS
ReportServer QUERYWORKS\=qlservice SQL Serwver Reporting Serwvices (MS
SQLAgent$50QL0L NT Service’\5Q0LAgent%5QLO1 SQL Serwver Agent (SQLO1)
SOLErowser NT AUTHORITY“LOCALSERVICE 5QL Server Browser
SQLSERVERAGENT QUERYWORKS' sqlagent SQL Server Agent (MSSQLSERVER)

204

Chapter 4

A service account is an account created for the exclusive purpose of running a service. To list
service accounts, we can use the Wmi . ManagedComputer object:

$managedComputer = New-Object 'Microsoft.SglServer.Management.Smo.Wni.
ManagedComputer' $instanceName

The managedComputer instance has a property called ServiceAccount, which is what we
want to list:

#list services

$managedComputer.Services |

Select Name, ServiceAccount, DisplayName, ServiceState |
Format-Table -AutoSize

We can also alternatively use the Get -WmiObject cmdlet to list the service accounts.
To use Get -WmiObject, we must first identify the hostname and the SQL Server namespace:

Shostname = "KERRIGAN"

$namespace = Get-WMIObject -ComputerName S$hostName -NameSpace root)\
Microsoft\SQLServer -Class " NAMESPACE" |
Where Name -Like "ComputerManagement*"

For SQL Server 2012, this value is ROOT\Microsoft\SQLServer\ComputerManagementll

We can then use Get -WmiObject to list all the SQL Server services and service accounts.
The service account is stored in the property StartName:

Get-WmiObject -ComputerName S$hostname
-Namespace "$ (Snamespace. NAMESPACE) \$ ($namespace.Name) "
-Class SglService |
Select ServiceName,

DisplayName,

@{N="ServiceAccount";E={$_ .StartName}} |
Format-Table -AutoSize

See also

» The Changing SQL Server service account recipe

» The Listing SQL Server instances recipe in Chapter 2, SQL Server and PowerShell
Basic Tasks

205

Security

Changing SQL Server service account

We will see how to change SQL Server accounts in this recipe.

Getting ready

To perform this recipe, you will need to create another Wwindows/Domain account that you
can use to change the service account to.

In this recipe, we will change the service account for SQLSERVERAGENT from QUERYWORKS\
sglagent to QUERYWORKS\sglagent01. Feel free to substitute these with accounts that
already exist in your system.

How to do it...

Let's explore the code required to change a SQL Server service account:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new Wmi . ManagedComputer object
as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

SinstanceName = "KERRIGAN"

$managedComputer = New-Object -TypeName 'Microsoft.SglServer.
Management .Smo.Wmi.ManagedComputer' -ArgumentList $instanceName

3. Add the following script and run:

#get handle to service

#note we are using V3 simplified Where-Object syntax
$servicename = "SQLSERVERAGENT"

$sglservice = $managedComputer.Services |
Where-Object Name -eq $servicename

#Option 1: change account using bare text

#might be ok as long as no one is looking over
#your shoulder, especially if you need to

206

Chapter 4

#set password for many servers

Susername = "QUERYWORKS\sglagentOl"

Spassword = "P@ssword"
$sglservice.SetServiceAccount (Susername, $password)

#sleep to wait for account change to finish
Start-Sleep -s 1

#display new service account
$sglservice.ServiceAccount

#Option 2: change account using GetNetworkCredentials

Susername = "QUERYWORKS\sglagentOl"
Scredential = Get-Credential -credential Susername

#iproblem here: SetServiceAccount accepts two strings
#Get-Credential provides the password as securestring
#by default if you pass this to SetServiceAccount,

#you will get an error to pass, you need to use $credential.
GetNetworkCredential () .password to

#get text equivalent

$sglservice.SetServiceAccount ($Scredential.UserName, S$credential.
GetNetworkCredential () . Password)

#sleep to wait for account change to finish
Start-Sleep -s 1

#display new service account
$sglservice.ServiceAccount

Confirm that the service account has changed:

#list services
$managedComputer.Services |
Where Name -eq $servicename |

Select Name, ServiceAccount, DisplayName, ServiceState |
Format-Table -AutoSize

207

Security

To change the service account, the first step is to get a handle to the service that you want to
change. In this recipe, we get a handle to SQLSERVERAGENT:

#get handle to service
Sservicename = "SQLSERVERAGENT"
$sglservice = Swmiserver.Services |
Where Name -eq $servicename

If you are using PowerShell V2, you will have to change the
% Where, or Where-0bject, cmdlet usage to use the curly
L. braces {} and the $_ variable:

Where {$.Name -eg $serviceName }

In this recipe, we looked at two alternatives. The first alternative is using a variable for
the username, and another one to store bare, clear text password, which we pass to
the SetServiceAccount method of the Microsoft.SglServer.Management.
Smo . Wmi . ManagedComputer class.

#Option 1: change account using bare text

#might be ok as long as no one is looking over your shoulder, esp if
you need to set password for many servers

Susername = "QUERYWORKS\sglagentOl"
Spassword = "P@ssword"
$sglservice.SetServiceAccount (Susername, $password)

This is not the ideal way to pass a password. Therefore, in the second alternative, we
do pretty much the same steps, but replace the password variable assignment with
the Get-Credential cmdlet:

Susername = "QUERYWORKS\sglagentOl"
Scredential = Get-Credential -credential Susername

With the Get -Credential cmdlet, you will be prompted for the password, and the password
will be stored as a SecureString. A SecureString is text that is encrypted using the
Windows Data Protection APl (http://msdn.microsoft.com/en-us/library/
ms995355. aspx).

208

http://msdn.microsoft.com/en-us/library/ms995355.aspx
http://msdn.microsoft.com/en-us/library/ms995355.aspx

Chapter 4

Windows PowerShell Credential Reguest ed |

=

Enter your credentials.

User name: | € JUERYWORKS\sqlagento1 ¥ | J

Pazsword: | |

QK I Cancel

It's good news because now our password is secure, isn't it? There's a caveat though. The
SetServiceAccount method accepts a string password, not a SecureString password.
This means that to set the new service account's password, we need to convert the password
back to a readable string that SetServiceAccount method can accept:

$sglservice.SetServiceAccount (Scredential.UserName, $credential.
GetNetworkCredential () . Password)

This is still a better approach than the first alternative. However, you need to take care that
nobody gets a handle to this script before you end your session. Otherwise, they will still see
the password in clear text if they invoke the following command:

Scredential .GetNetworkCredential () . Password

» The Listing SQL Server service accounts recipe

» Check out these MSDN articles related to service accounts:

[u]

Service Accounts Step-by-Step Guide (http://msdn.microsoft.com/
en-us/library/dd548356 (WS.10) .aspx)

Create Windows PowerShell Scripts that Accept Credentials (http://msdn.
microsoft.com/en-us/magazine/f£714574 .aspx)

209

http://msdn.microsoft.com/en-us/library/dd548356(WS.10).aspx
http://msdn.microsoft.com/en-us/library/dd548356(WS.10).aspx
http://msdn.microsoft.com/en-us/magazine/ff714574.aspx
http://msdn.microsoft.com/en-us/magazine/ff714574.aspx

Security

Listing authentication modes

In this recipe, we will list authentication modes using PowerShell and SMO.

Getting ready

Confirm which authentication mode your instance is running.

Go to SQL Server Management Studio, and log in to your instance. Once logged in, right-click
on the instance and go to Properties, and then to Security:

B server Properties - KERRIGAN

L5 Seript ~ (Y Help

A General
1% Memory
2 Processors Server authentication
el Security
4 Connections " Windows Authentication mode
% Database Settings
5 Advanced

1% Pemissions

¥ S0L Server and Windows Authertication mode

Login auditing
" MNone
%" Failed logins only
" Successful logins only

How to do it...

Let's list the steps required to display your instance's current authentication mode:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

Chapter 4

2. Import the sQL.PS module, and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

#display login mode
$server.settings.LoginMode

This is a very short recipe. To display the login mode, you need to have a handle to the instance
first. Once the server handle is established, you need to access the server object's Settings.
LoginMode property:

#display login mode
$server.settings.LoginMode

Authentication modes are discussed in more detail in the
i Changing authentication mode recipe.

See also

» The Changing authentication mode recipe

Changing authentication mode

In this recipe, we will change the SQL Server authentication mode.

Getting ready

Confirm which authentication mode your instance is running.

Security

Go to SQL Server Management Studio, and log in to your instance. Once logged in, right-click on
the instance and go to Properties, and to Security, similar to what we did in the previous recipe:

E' Server Properties - KERRIGAN

8 Seipt ~ L Help

|2 General
25 Memary
1% Processors Server authentication

= urity

Connections " Windows Authentication mode

—ﬁlﬁ Database Settings ' 50L Server and Windows Authentication mode
[Advanced

;gﬁ Permissions

Login auditing
= Mone
{* Failed logins only
" Successful loging only

In this recipe, we will change the authentication mode from Mixed to Integrated.

How to do it...

Let's explore the steps required to complete the task:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module, and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
S$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

#according to MSDN, there are four (4) possible
#values for LoginMode:

#Normal, Integrated, Mixed and Unknown

#let's change ours to Integrated

Chapter 4

$server.settings.LoginMode = [Microsoft.SglServer.Management.Smo.
ServerLoginMode] : : Integrated

Sserver.Alter ()
Sserver.Refresh ()

#display login mode
$server.settings.LoginMode

To change the authentication mode, you first need to get a handle to the server instance.
Once you have the handle, you can assign a valid LoginMode enumeration value to the
LoginMode property:

$server.settings.LoginMode = [Microsoft.SglServer.Management.Smo.
ServerLoginMode] : : Integrated

There are four possible values: Normal, Integrated, Mixed, and Unknown. Once the

new authentication mode is assigned, you can invoke the Alter method of the SMO server
object. Optionally, you can also call the Refresh method if you want to display the new value
right away:

Sserver.Alter ()
Sserver.Refresh ()

Note however, that while the GUI may reflect the change in authentication mode, the actual
change will not take effect until the SQL Server service is restarted.

There's more...

Authentication mode in SQL Server identifies how login accounts can connect to an instance.
There are two well-known modes: Mixed and Integrated.

However, if you check out the valid enumeration values for LoginMode on MSDN, there
are four:

LoginMode Description

Normal SQL Authentication only
Integrated Windows Authentication only
Mixed SQL and Windows Authentication
Unknown Unknown

Security

It is interesting to note that the two lesser-known modes are not accessible using SQL Server
Management Studio. If you do try to set these values using PowerShell and SMO, it will disable
the Authentication Mode in Management Studio:

$server.settings.LoginMode = [Microsoft.SglServer.Management.Smo.
ServerLoginMode] : :Normal

$server.Alter()

$server.Refresh()

In Management Studio, this is what you will see.

E' Server Properties - KERRIGAN

8 Seript - | Help

<) Server authentication -~
Connections " Windows Authentication mode /
_2“ Database Settings {7 SQL Senverand Windows Autherticationmode

Advanced
%A Permissions

Login auditing
" None

' Failed logins only

" Successful logins only

™ Both failed and successful logins

For our example, we only need to be concerned with Mixed and Integrated. Normal and
Unknown are legacy values, and should not be used in today's production environments.

Check out the MSDN article on different ServerLoginMode enumeration values:

http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management . smo.serverloginmode.aspx

More on legacy LoginMode values

Tibor Karaszi wrote a blog post called Watch out for Old Stuff that explains the four
ServerLoginMode values and where we might encounter them:

http://sglblog.com/blogs/tibor karaszi/archive/2010/09/15/watch-out-
for-old-stuff.aspx

» The Listing authentication mode recipe

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverloginmode.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverloginmode.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverloginmode.aspx
http://sqlblog.com/blogs/tibor_karaszi/archive/2010/09/15/watch-out-for-old-stuff.aspx
http://sqlblog.com/blogs/tibor_karaszi/archive/2010/09/15/watch-out-for-old-stuff.aspx
http://sqlblog.com/blogs/tibor_karaszi/archive/2010/09/15/watch-out-for-old-stuff.aspx

Chapter 4

Listing SQL Server log errors

In this recipe, we will list SQL Server log errors.

Getting ready

Check your SQL Server log in Management Studio. This should be what our PowerShell script
should report.

How to do it...

Let's check how we can list SQL Server errors using PowerShell:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module, and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

#According to MSDN:

#ReadErrorLog: returns A StringCollection system object
#value that contains an enumerated list of errors from
#the SQL Server error log.

#Note we are using PowerShell V3 because of simplified
#Where-Object syntax
[datetime] $date = "2011-11-01"

$server.ReadErrorLog () |
Where-Object Text -Like "*failed*" |
Where-Object LogDate -ge $date |
Format-Table -AutoSize

Security

Your result should look similar to the following screenshot:

LogDate ProcessInfo Text

2/1/2012 10:12:18 AM Server Logging 5QL S5erver messages in Tile 'C:\Pr
2/1/2012 10:12:18 AM Server Registry startup parameters: ...

2/1/2012 10:25:16 AM Logon Error: 18436, Severity: 14, State: 38.
2/1/2012 10:25:23 AM Logon Error: 18456, Severity: 14, State: 3&.
2/1/2012 10:25:31 AM Logon Error: 18456, Severity: 14, State: 38.
2/1/2012 AM spid23s CHECKDE for database 'AdventureWorks2008R2
2/4/2012 Logon Error: 18456, Severity: 14, State: 3.
2/4/2012 Logon : 18456, Severityw: 1 tate; 8.

4. Confirm that these entries exist in the Error Logs via Management Studio.

Open SQL Server Management Studio, and connect to your instance. Expand SQL
Server Agent | Error Logs:

» BFERRIGAN (SQL Server 11.0. 1440 - KERRIGAN\Administrator)
[Databases
[Security
[Server Objects
3 Replication
[Management
[Integration Services
= |_‘% S0L Server Agent
[Jobs
4] Job Activity Monitor
3 Alerts
[Operators
[Proxies
[= [Error Logs

#] current

- 2/4/2012 10:53:00 AM

5. Double-click on the Current error log. By default, this opens to SQL Server Agent
logs. Change the selected log to be SQL Server.

Chapter 4

[Proxies

[l [Error Logs BILog

] current - 2/4/2012 10:53:00 AM [7LloadLog (gl Export [#]Refresh F Filter... < Search... stop [[FyHel
| Archive #1 - .53]
8— Ard'1!ve #1-2/4/2012 10:53:00 AM Cuenrer 2 Log file summary: Mo filter applied
4] Archive #2 - 2/1/2012 10:10:00 AM ment - e [Message
] Archive #3 - 1/16/2012 7:04:00 AM O Archive #1 - === -
] Archive #4 - 1/7/2012 9:36:00 AM O Archive #2 2l 2/6/2012 74852 AM | This instance of SQL Server has been using a pro
4] Archive #5 - 1/7/2012 9:36:00 AM [Archive #3 i 2/5/201211:14:18 PM | Datat backed up. Database: AdventureWorks
4| Archive #6 - 1/7/2012 9:25:00 AM ClArchive # 1| 2/5/201211:12:28PM Database backed up. Database: Adverturs\orks
] Archive #7 - 1/7/2012 8:23:00 AM Hx!"e ﬁ i 2/5201211:00:29FM D backed up. D - AdventureWorks
7] i - .41 ive
& Archive #8 - 12/28/2011 11:41:00F Imoewewn | 2| 2/5/2012 11:0006PM | D backed up. D : AdventureWorks
] Archive #9 - 12/18/2011 11:58:00 7 [CIEEIEENCRIE | = : :
[Database Mail E 2/5/201210:50:59 PM | D backed up. D : AdventureWorks
[0 Windows NT i 2/5/2012 7:36:19 FM Setting database option RECOVERY to FULL for d
= kS race stopped. Trace ID =2, Login Name =
H 2/5/20121:15:08 PM SQLT ed. Tr ID ="Z". Login N ’
= 14 race: was start ogin
H 2/5/20121:14:55 PM SQLT D2 ed by | "KERRIGAN
= 13 race stopped. Trace ID =2, Login Name =
H 2/5/20121:13:46 PM SQLT ed. Tr ID ="Z". Login N ’
3 13 race was start ogin
2/5/2012 1:13:40 PM SQLT D2 ed by | "KERRIGAN

6. To filter, click on the Filter... icon. Add the string failed in the Message contains
text field, and check the Apply filter checkbox:

1 [Load Log ¢E| Export [#]refresh | F Filter .| & Sed

Y Filter Settings

Start Date / ENCHY
End Date an
H General scan
Message cortains text failed L
Source B
Instance Name on
Evert sCan
EMCT
on
Message contains text T
Log entry message must contain this text (case insensitive) rad
stary
& Trad
W Applyfiter Clear start

7. Click on OK to see the filtered log events.

Security

8. If you want to get generic errors from the Event log, add the following script and run:
#if you want to get all the generic errors from the Event Log
#you can use this
Get-EventLog Application -Source "MSSQLSERVER" -EntryType Error

Index Time EntryType Source InstanceID Message

10779 Mar 30 23:59 Error MSSQLSERVER 3221239623 Replication-Replication Distribution Subsyst
10778 Mar 30 23:59 Error MSSQLSERVER 3221239623 Replication-Replication Distribution Subsys

10777 Mar 30 23:59 Error MSSQLSERVER 3221239623 Replication-Replication Transaction-Log Rea

10776 Mar 30 23:59 Error MSSQLSERVER 3221239623 Replication-Replication Transaction-Log Rea

10775 Mar 30 23:58 Error MSSOLSERVER 3221239623 Replication-Replication Distribution Subsyst
10774 Mar 30 23:58 Error MSSQLSERVER 3221239623 Replication-Replication Distribution Subsys

10773 Mar 30 23:58 Error MSSOLSERVER 3221239623 Replication-Replication Transaction-Log Read
10772 Mar 30 23:58 Error MSSQLSERVER 3221239623 Replication-Replication Transaction-Log Read
10771 Mmar 30 23:57 Error MSSQLSERVER 3221239623 Replication-Replication Distribution Subsyst
10770 Mar 30 23:57 Error MSSQLSERVER 3221239623 Rep1icati0n—Rep11caﬁigq‘zransactigﬂ:Log Rea

e

TR

To check this visually, you can go to Administrative Tools | Event Viewer. Go to
Application, and Filter Current Log. Check Error, Critical, and Warning under
Event level, and under Event sources choose MSSQLSERVER.

)
: B! Event Viewer
File Action View Help
(e | 2im|
& Event Viewer (Local) Application Number of events:
7 Custom Views
=] i_- Windows Logs Level Date and Time Source -
53 Application M %Infmmaﬁon 2/11/2012 3:55:41 PM MSSQL... = Open Saved Log...
g:' Security Information 2/11/2012 3:55:40 PM MSS0L...)
Create Custom View. .,
] setup (i)information 2/11/2012 3:55:40 PM MSSGL... ¥ Create Custom View
=1 Svstem (i) Information 24119012 3:55:77 PM MSS0 ... Import Custom View...
ter Current L X
= x| - Clear Log...
Filter |XML I — ? Filter Current Log...
Logged: IA”y time — [=] Properties
B8 Find...
Event level: v Critical ¥ Warning ™ Verbose
H Save All Events As...
IV Error ™ Information Attach a Task To this Log]
% Bylog Event logs: I-;'.pplicaticn View
" Bysource |Event sources: MSSQLSERVER Refresh

What you should see after you filter are only the errors pertaining to the default
instance MSSQLSERVER:

Chapter 4

2] Event viewer (Local) Application Number of events: 3,913
= Custom Views
= !_. Windows Logs i

Filtered: Log: Application; Levels: Critical, Error, Warning; Source: MSSQLSERVER. Mumber of &

= Appl@hon Date and Time
BTV S | S AN W
= setup - SSOLSERVER. Server
= System MS5QLSERVER Server
Forwarded Events 1/28/2012 12:53:42FM MSSQLSERVER: 17204 Server
= [Applications and Services Logs 1/17/2012 11:13:40 FM MSSQLSERVER 5170 Server
| Hardware Events 1/17/2012 11:13:40 PM MSSQLSERVER 5170 Server
= Internet Explorer @Error 11/27/2011 11:14:09 AM MSSOLSERVER 17207 Server
o Key Management Service
= Microsoft
=] Microsoft Office Alerts Event 17204, MSSQLSERVER
) §.—| Windows PowerShell
d Subscriptions General | Details I

SMO provides a way to easily retrieve and display SQL Server-related errors. This is through
the ReadErrorLog method of the SMO server object. The ReadErrorLog method retrieves
a list of errors from the SQL Server error log. In our recipe, we filtered only the log entries that
contained the word failed, and only those ones that happened after November 01, 2011.
Note that we are using the simplified PowerShell V3 syntax for the Where-Object cmdlet:

[datetime] Sdate = "2011-11-01"

$server.ReadErrorLog () |
Where-Object Text -Like "*failed*" |
Where-Object LogDate -ge $date |
Format-Table -AutoSize

Note that to use V2 syntax, you will need to change the

% Where-Object line to:
o

Where-Object {$.Text -Like "*failedx"

-and $_.LogDate -ge $date}

You can read more about the ReadErrorLog method from MSDN:

http://msdn.microsoft.com/en-us/library/ms210384 .aspx

Instead of using the ReadErrorLog method, an alternative is to use the Get -EventLog

cmdlet and filter by source and keyword:

Get-EventLog Application -Source "MSSQLSERVER" -Message

"xfailed"

http://msdn.microsoft.com/en-us/library/ms210384.aspx
http://msdn.microsoft.com/en-us/library/ms210384.aspx

Security

The Get -EventLog cmdlet supports a number of switches that allow you to further filter and
sort results. If you want to display strictly Exrror entry types, you can use:

Get-EventLog Application -Source "MSSQLSERVER" -EntryType Error
Type the following to get more information about the Get -EventLog syntax and usage:

Get-Help Get-EventLog

» The Listing failed login attempts recipe

Listing failed login attempts

This recipe lists failed login attempts in your SQL Server instance.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module, and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

#According to MSDN:

#ReadErrorLog returns A StringCollection system object
#value that contains an enumerated list of errors
#from the SQL Server error log.

$server.ReadErrorLog () |
Where-Object ProcessInfo -Like "*Logon*"

220

Chapter 4

Where-Object Text -Like "*Login failed*" |
Format-List

LogDate
ProcessInfo
Text

LogDate
ProcessInfo
Text

LogDate
ProcessInfo
Text

LogDate
ProcessInfo
Text

LogDate
ProcessInfo :
ext

: 2/1/2012 10:25:16 AM
: Logon
: Login failed for user

1 2/1/2012 10:25:23 AM
: Logon
: Login failed for user

: 2/1/2012 10:25:31 AM
: Logon
: Login failed for user

1 2/4/2012 2:17:40 PM
: Logon
: Login failed for user

: 2/4/2012 2:17:48 PM

"QUERYWORKS sglservice'. Reason: Failed to open the

'QUERYWORKS=glservice'. Reaszon: Failed to open the

"QUERYWORKS sglservice'. Reason: Failed to open the

"dean’.

Reason:

Password did not match that for the

did not match tha

explicit

explicit

explicitl

One way to get failed login attempts is by using the method ReadErrorLog of the SMO Server
object and filtering by ProcessInfo and Text properties. The ProcessInfo value we are

targeting is Logon, and we want to display any login activities that have failed. We are using
the simplified PowerShell V3 syntax for Where-0Object in this code block:

$server.ReadErrorLog ()

Where-Object ProcessInfo -Like "*Logon*" |
Where-Object Text -Like "*Login failed*" |
Format-List

See also

To use V2 syntax, you will need to change the Where-0Object line to:

Where-Object {$_ .ProcessInfo -Like "*Logon*" -and
$.Text -Like "*Login failed*"}

» The Listing SQL Server log errors recipe

221

Security

Listing logins, users, and database

mappings

This recipe lists logins and their corresponding usernames and database mappings.

Getting ready

To check the logins and their database mappings in SQL Server Management Studio, log in
to SSMS. Go to the security folder, expand Logins, and double-click on a particular login.
This will show you the Login Properties window. Click on the User Mapping option on the left
pane, as shown in the following screenshot:

E Login Properties - belle

|Selectap: 8 Seipt ~ [Help
& General
_:: Ei:el';:;:l:?:g Users mapped to this login:
EJI Securables Map I Database I User I Default Schem
15 Status I AdvertureWorks2008R2 | donabel dbo
- master
- model
- mzdb
[ReportServer
I ReportServerTempDB
- Sample Encryption

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

Sserver = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

222

Chapter 4

3. Add the following script and run it:

#display login info

#ithese are two different ways of displaying login info
$server.Logins

$server.EnumWindowsUserInfo ()

#List users, and database mappings
$server.Databases |
ForEach-Object {
#capture database object
Sdatabase = $_

#capture users in this database
Susers = $_ .Users

Susers |

Where-Object { -not($_.IsSystemObject)} |
Select @{N="Login";E={$_ .Login}},
@{N="User";E={$_ .Name}},

e{N ={$database.Name}},
@{N="LoginType" ;E={$_.LoginType}},
@{N="UserType" ;E={$.UserType}}

="DatabaseName"; E

I

Format-Table -AutoSize

This should give a result similar to the following:

Login User DatabaseName LoginType UserType
belle donabel AdventureWorks2008R2 SglLogin SqlLogin,
eric eric AdventureWorks2008R2 SglLogin SqlLogin
QUERYWORKS' aterra QUERYWORKS \aterra AdventureWorks2008R2 WindowsUser SglLogin.
QUERYWORKS" jraynor QUERYWORKS" jraynor AdventureWorks2008R2 WindowsUser SqllLogi
#3M5_AgentSigningCertificate## ##MS_AgentSigningCertificate## master Certificate Certific
##M5_PolicyEventProcessinglogin## ##M5_PolicyEventProcessinglogin## master SqlLogin SqlLogin
QUERYWORKS \sqlservice QUERYWORKS'\sglservice master WindowsUser SqlLogin
##M5_PolicyEventProcessingloging# #iM5_PolicyEventProcessinglogingsd msdb SqlLogin SqlLogin
##MS_PolicyTsqlExecutionLogin## ##MS5_PolicyTsqlExecutionLogin## msdb SglLogin SqlLogin
M5_DataCollectorInternalUser msdb SqlLogin NoLogin
QUERYWORKS'sqlservice QUERYWORKS \=glservice msdb WindowsUser SgqlLogin
E 1 ' s : ortSe) pndowsUzer S !

223

Security

To just display the logins, you can use the server object and the Logins property.
$server.Logins

An alternative way, if you are only interested in a Windows account, is using the
EnumWindowsUserInfo method of the SMO server class, which returns the
Windows users who have been explicitly given SQL Server access:

Sserver.EnumWindowsUserInfo ()

To display only database users, you can get a handle to a specific database and use the
Users property of that database's handle.

The most straightforward way of getting all the mappings is by looping through all the
databases, and getting a handle to all the users in that database. Once there is a handle to
the database object's Users, you can display properties such as Login, User, LoginType,
and UserType. Note that we create a custom table so we can display the results with a more
meaningful format and headers. To do this, we provide formatting instructions to our Select
cmdlet; N refers to the Name of the property, and E refers to the Expression that will derive
the value:

$server.Databases |
ForEach-Object ({
#icapture database object
Sdatabase = $

#icapture users in this database
Susers = $.Users

Susers |

Where-Object { -not($
Select @{N="Login";E={
@{N="User";E={$_.Name}
@{N="DatabaseName" ;E={$database.Name}},
@{N="LoginType" ;E={$.LoginType}},
ef

.IsSystemObject)} |
$.Login}},
b

N="UserType";E={$_.UserType}}

I

Format-Table -AutoSize

There's more...

Logins and users are two terms that are often interchanged, but shouldn't be. A login is a
server principal that is used for authenticating who can connect and who will have access,
on the instance level.

224

Chapter 4

SQL Server supports two types of logins—Windows Login and SQL Login. A Windows Login is
a Windows-level principal, which means that this is seen and shared with the Windows OS or
domain. A SQL Login is a SQL Server principal or a login known only to SQL Server.

A user, on the other hand, is a database principal. This means that it is a database-level object
and not a server-level object. A user is often mapped to a valid login using the login's Security
ID (SID). There are cases when the user isn't mapped; this is when the user is orphaned. This
can happen when the database has been moved or restored to a different instance that does
not contain the original login. This can also happen when a login has been removed from the
instance, and the related database users have not been cleaned up or reassigned.

» The Listing login/user roles and permissions recipe

Listing login/user roles and permissions

This recipe shows how you can list a login- and user-related roles and permissions.

How to do it...

Let's check the code needed to list the login/user roles and permissions.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

$server.Databases |
ForEach-Object ({
#capture database object
Sdatabase = $_

#capture users in this database
Susers = $_ .Users

225

Security

Susers |

Where-Object { -not($_.IsSystemObject)} |

Select @{N="Login";E={$_ .Login}},

@{N="User";E={$_.Name}},

@{N="DatabaseName" ;E={$databaseName}},

@{N="DBRoles";E={$.EnumRoles() }},

@{N="ObjectPermissions";
E={$database.EnumObjectPermissions ($_ .Name) }}

I

Format-Table -AutoSize

You should see a display similar to the following screenshot:

Login : QUERYWORKS . =qglservice
User : QUERYWORKS'sqglservice
DatabaseName : ReportSerwver

DERc es : RSExecRole db_gwner
ObjectPermissions :

Login : QUERYWORKS'sglservice
User : QUERYWORKS . =glservice
DatabaseName : ReportSerwverTempDB
DERcles : RSExecRole db_gwner
ObjectPermissions :

|

Login : EncryptionLogin

User : EncryptionUser
DatabaseName : SampleEncryption
DERoles

ObjectPermissions : [CustomerDetails] ObjectOrColumn: EncryptionUser, Grant, INSERT [Cus

A database mapping determines which logins are related to which database users.
Remember that a database user is a database-level principal that is mapped to a login
via a Security ID (SID).

To display the database mappings, we will need to loop through all the databases and display
the mappings using each individual User class' objects. In this recipe, we ignored all system
objects (such as sys, guest, information schema). For each user, we also displayed their
respective database roles using the EnumRoles method of the User class, and their respective
database-level permissions using EnumObjectPermissions of the database class:

$server.Databases |
ForEach-Object ({
#capture database object
Sdatabase = $_

#capture users in this database
Susers = $_.Users

226

Chapter 4

}

Susers |

Where-Object { -not($_.IsSystemObject)} |

Select @{N="Login";E={$_.Login}},

@{N="User";E={$_.Name}},

@{N="DatabaseName" ;E={$databaseName}},

@{N="DBRoles";E={$.EnumRoles()}},

@{N="ObjectPermissions";
E={$database.EnumObjectPermissions ($.Name) }}

Format-Table -AutoSize

See also

4

The Listing logins, users, and database mappings recipe

Creating a login

This recipe shows how you can create a login using PowerShell and SMO.

Getting ready

For this recipe, we will create a SQL login called eric. The T-SQL equivalent of what we are
trying to accomplish is:

CREATE LOGIN [eric]
WITH PASSWORD=N'YourSuperStrongPassword',

CHECK_EXPIRATION=OFF
GO

How to do it...

1.

Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
Import the SQL.PS module and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name

SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

227

Security

3. Add the following script and run it:
$loginName = "eric"

drop login if it exists
if ($server.Logins.Contains ($loginName))

{
}

$login = New-Object
-TypeName Microsoft.SglServer.Management.Smo.Login
-ArgumentLigst S$server, $loginName

$login.LoginType = [Microsoft.SglServer.Management.Smo.
LoginTypel] : : SglLogin

$login.PasswordExpirationEnabled = $false

Sserver.Logins [$loginName] .Drop ()

<~

~

prompt for password
Spw = Read-Host "PW" -AsSecureString
$login.Create ($pw)

The first thing we need to do, after getting an SMO server object handle, is create an SMO
Login object:

$login = New-Object
-TypeName Microsoft.SglServer.Management.Smo.Login
-ArgumentList $server, $loginName

The next step is to identify what type of login this is. The possible LoginTypes are
AsymmetricKey, Certificate, SQLLogin, WindowsGroup, and WindowsUser
In our recipe, we are using a SQLLogin:

$login.LoginType = [Microsoft.SglServer.Management.Smo.
LoginType] : : SglLogin

The login object also has a few settable properties, such as PasswordPolicyEnforced and
PasswordExpirationEnabled

$login.PasswordExpirationEnabled = $false

When ready, you can invoke the Create method of the Login class. Note that the Create
method has a few overloads, some of which allow you to pass LoginCreateOptions. In our
recipe, we are only passing in a password, which we collect using a Read-Host cmdlet. We
prompt the user for the password instead of hardcoding it with our script ourselves:

Spw = Read-Host "PW" -AsSecureString
$login.Create ($pw)

228

Chapter 4

» The Assigning permissions and roles to a login recipe

» The Creating a database user recipe

Assigning permissions and roles to a login

This recipe shows you how to assign permissions and roles to a login by using PowerShell
and SMO.

Getting ready

If you haven't already done so in the Creating a login recipe, create a SQL login name eric.
We will be assigning the dbcreator and setupadmin server role to this login, as well as
granting ALTER permissions to any setting or database. The T-SQL equivalent of what we are
trying to accomplish is:

ALTER SERVER ROLE [dbcreator]
ADD MEMBER [eric]
GO
ALTER SERVER ROLE [setupadmin]
ADD MEMBER [eric]
GO
GRANT
ALTER ANY DATABASE,
ALTER SETTINGS
TO [eric]

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
$instanceName = "KERRIGAN"

Sserver = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

229

Security

3.

After we

Add the following script and run it:

#assumption is this login already exists
$loginName = "eric"

#assign server level roles

$login = $server.Logins [$loginName]
$login.AddToRole ("dbcreator")
$login.AddToRole ("setupadmin")
$login.Alter ()

#grant server level permissions

Spermissionset = New-Object Microsoft.SglServer.Management.Smo.
ServerPermissionSet ([Microsoft.SglServer.Management.Smo.ServerPerm
ission] : :AlterAnyDatabase)
Spermissionset.Add([Microsoft.SglServer.Management.Smo.ServerPermi
ssion] : :AlterSettings)

$server.Grant ($Spermissionset, $loginName)

#iconfirm server roles
$login.ListMembers ()

#confirm permissions
$server.EnumServerPermissions ($loginName) |
Select Grantee, PermissionType, PermissionState |
Format-Table -AutoSize

You should get a result similar to the following;:

setupadmin
dbcreator
Grantee PermissionType PermissionState
eric ALTER ANY DATABASE Grant
eric ALTER SETTINGS Grant
eric CONMECT SQL Grant

create an SMO server object, we create a handle to the SMO 1ogin object that we

want to query:

$loginName = "eric"

230

Chapter 4

#assign server level roles
$login = $server.Logins [$loginName]

The login object has an AddToRole method, which we can use to add the login as a
member of fixed server roles:

$login.AddToRole ("dbcreator")
$login.AddToRole ("setupadmin")

When we're ready to send this command to SQL Server, we issue the Alter method of the
login object.

$login.Alter ()

Now we also have the option to assign specific permissions outside of the role, for the login.
This requires creating a ServerPermissionSet object. The following code creates the
permission set and adds the permission AlterAnyDatabase to the list of permissions
that we will be assigning;:

Spermissionset = New-Object Microsoft.SglServer.Management.Smo.
ServerPermissionSet ([Microsoft.SglServer.Management . Smo.
ServerPermission] : :AlterAnyDatabase)

This permission set can accommodate multiple server-level permissions. In our recipe, we add
another permission—AlterSettings—by issuing this command:

Spermissionset.Add ([Microsoft.SglServer.Management.Smo.
ServerPermission] : :AlterSettings)

To finalize the process, we issue the grant statement on the object with the parameters being
the permission set that we have created, and the login.

$server.Grant (Spermissionset, $loginName)

See also

» The Creating a login recipe

» The Creating a database user recipe

» Read more about the ServerPermissionSet class from MSDN:
http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management . smo.serverpermissionset (v=sgl.110) .aspx

» Check out all the ServerPermission properties from:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
management . smo.serverpermission.aspx

231

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverpermissionset(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverpermissionset(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverpermission.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverpermission.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverpermission.aspx

Security

Creating a database user

This recipe demonstrates how to create a database user by using PowerShell and SMO.

Getting ready

If you haven't already done so in the Creating a login recipe, create a SQL login called eric.

In our recipe, we will use a login called eric, which we will map to a user called eric in
the AdventureWorks2008R2 database. The T-SQL equivalent of what we are trying to
accomplish is:

USE [AdventureWorks2008R2]
GO

CREATE USER [eric]
FOR LOGIN [eric]

How to do it...

Here are the steps for creating a database user:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQLPS module and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.

Server -ArgumentList $instanceName
3. Add the following script and run it:

$loginName = "eric"

#get login
$login = $server.Logins [$loginName]

#add a database mapping
Sdatabasename = "AdventureWorks2008R2"
Sdatabase = $server.Databases[$databasename]

232

Chapter 4

if ($database.Users [SdbUserName])

{

Sdatabase.Users [$dbUserName] .Drop ()

SdbUserName = "eric"

$dbuser = New-Object

-TypeName Microsoft.SglServer.Management.Smo.User °
-ArgumentList S$database, $dbUserName

$dbuser.Login = $loginName
Sdbuser.Create ()

4. To confirm that the user has been created:

1. Open SQL Server Management Studio.
2. Expand Security and expand Logins.

3. Double-click the login called eric.
4

Highlight User Mapping from the left-hand pane. You should see that
eric has been mapped to the AdventureWorks2008R2 database:

E Login Properties - eric - |EI|
8 Script ~ [Help

2 General

& Server Roles . .

§: User Mapping Users mapped to this login: /

%7 Secursbles N Map | Database | User / | Default Schema -

127 Status ¥ | AdventureWorks2008R2 eric dbo [

- Chinook

- |dera

r master

- model

- msdb

- ReportServer
r

r

ReportServerTemp DB L
SampleDB

After creating the SMO server object, create a handle to the login you wish to use:

$loginName = "eric"

#get login
$Slogin = $server.Logins[$loginName]

233

Security

Next, you need to get a handle to the database that you want this login to have a
corresponding user to. In our case, we will be using AdventureWorks2008R2:

Sdatabasename = "AdventureWorks2008R2"
Sdatabase = $server.Databases [$databasename]

To create a database user, we need to instantiate a Microsoft.SglServer.Management .
Smo . User object, and pass the database and database username as arguments:

$dbUserName = "eric"

Sdbuser = New-Object

-TypeName Microsoft.SglServer.Management.Smo.User ~
-ArgumentList $database, $dbUserName

$dbuser.Login = $loginName
The final step is to issue the Create method on the $dbuser object.

Sdbuser.Create ()

» The Creating a login recipe

» The Assigning permissions and roles to a database user recipe

Assigning permissions to a database user

This recipe shows how to assign permissions to a database user via SMO and PowerShell.

Getting ready

In this recipe, we will use the AdventureWorks2008R2 database user eric that we created
in the previous recipes. We will grant this user ALTER and CREATE TABLE permissions. The
T-SQL equivalent of what we are trying to accomplish is:

USE [AdventureWorks2008R2]
GO
GRANT
ALTER,
CREATE TABLE
TO [eric]

You can substitute this with any database user you have in your database.

Chapter 4

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name

SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

Sdatabasename = "AdventureWorks2008R2"
Sdatabase = S$server.Databases[$databasename]

#get a handle to the database user we want
#to assign permissions to
Sdbusername = "eric"

Sdbuser = S$database.Users[$Sdbusername]

#assign database permissions

Spermissionset = New-Object Microsoft.SglServer.Management.
Smo.DatabasePermissionSet ([Microsoft.SglServer.Management.Smo.
DatabasePermission] : :Alter)

Spermissionset.Add ([Microsoft.SglServer.Management.Smo.DatabasePer
mission] : :CreateTable)

#grant the permissions
Sdatabase.Grant ($permissionset, $dbuser.Name)

#confirm permissions

$database.Users |

ForEach-Object ({
$database.EnumDatabasePermissions ($_.Name) |
Select PermissionState, PermissionType, Grantee

I

Format-Table -AutoSize

235

Security

When the script has been successfully executed, you should see a screen similar to
the following;:

PermissionState PermissionType Grantee

Grant CONNECT belle
Grant CONNECT dbo
Grant CONNECT donabel
Grant ALTER eric
Grant CONNECT eric

Grant CREATE TABLE eric

To add specific permissions to a database user, you must first get a handle to the database user.

Sdbusername = "eric"
Sdbuser = $Sdatabase.Users[$dbusername]

The next step is to define a DatabasePermissionSet object. This object will contain all the
permissions you want to assign to your database user:

#assign database permissions

Spermissionset = New-Object Microsoft.SglServer.Management.
Smo.DatabasePermissionSet ([Microsoft.SglServer.Management.Smo.
DatabasePermission] : :Alter)

Spermissionset.Add ([Microsoft.SglServer.Management.Smo.
DatabasePermission] : :CreateTable)

Once you've added all the permissions, invoke the Grant method of the database object:

#grant the permissions
Sdatabase.Grant ($permissionset, $dbuser.Name)

To list all the permissions, we can go through each of the database users, and pass each user
to the database's EnumDatabasePermissions method. This should list whether GRANT,
DENY, or REVOKE has been assigned to a particular permission and principal:

$database.Users |

ForEach-Object ({
$database.EnumDatabasePermissions ($_.Name) |
Select PermissionState, PermissionType, Grantee

I

Format-Table -AutoSize

236

Chapter 4

See also

» The Creating a database user recipe
» Read more about the DatabasePermissionSet class from MSDN:

http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management . smo.databasepermissionset (v=sgl.110) .aspx

Creating a database role

In this recipe, we will walk through creating a custom database role.

Getting ready

In this recipe, we will create a database role called Custom Role, and we will grant it SELECT
permissions to the HumanResources schema, and ALTER and CREATE TABLE permissions
to the database.

The T-SQL equivalent of what we are trying to accomplish is:

USE AdventureWorks2008R2
GO

CREATE ROLE [Custom Role]
GO

GRANT SELECT
ON SCHEMA: : [HumanResources]
TO [Custom Role]

GRANT ALTER, CREATE TABLE
TO [Custom Role]

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

237

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.databasepermissionset(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.databasepermissionset(v=sql.110).aspx

Security

#ireplace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

Sdatabasename = "AdventureWorks2008R2"
Sdatabase = S$server.Databases[$databasename]
#role

Srolename = "Custom Role"

if ($database.Roles[Srolename])

{
}

#let's assume this custom role, we want to grant

Sdatabase.Roles [Srolename] .Drop ()

#teveryone in this role select, insert access
#to the HumanResources Schema, in addition to the
#CreateTable permission

$dbrole = New-Object Microsoft.SglServer.Management.Smo.
DatabaseRole -ArgumentList S$database, S$Srolename
Sdbrole.Create ()

#verify; list database roles
Sdatabase.Roles

#icreate a permission set to contain SELECT permissions
#for the HumanResources schema

Spermissionsetl = New-Object Microsoft.SglServer.Management.
Smo.ObjectPermissionSet ([Microsoft.SglServer.Management . Smo.
ObjectPermission] : :Select)

Spermissionsetl.Add([Microsoft.SglServer.Management.Smo.
ObjectPermission] : :Select)
Shrschema = $database.Schemas ["HumanResources"]

Shrschema.Grant ($Spermissionsetl, $dbrole.Name)

#icreate another permission set that contains

#CREATE TABLE and ALTER on this database

Spermissionset2 = New-Object Microsoft.SglServer.Management.Smo.
DatabasePermissionSet ([Microsoft.SglServer.Management.Smo.
DatabasePermission] : :CreateTable)

Spermissionset2.Add ([Microsoft.SglServer.Management.Smo.
DatabasePermission] : :Alter)

238

Chapter 4

Sdatabase.Grant ($permissionset2, $dbrole.Name)

#to add member

#assume eric is already a user in the database
Susername = "eric"

Sdbrole.AddMember (Susername)

#iconfirm permissions

Sdatabase.Roles [$Srolename] |

ForEach-Object ({
Scurrentrole = $_
$database.EnumDatabasePermissions ($_.Name) |
Select PermissionState, PermissionType, Grantee,
@{N="Members" ;E={Scurrentrole.EnumMembers () }}

I

Format-Table -AutoSize

When the script has been successfully executed, you should see a screen similar to
the following:

PermissionState PermissionType Grantee Members

Grant ALTER Custom Role eric
Grant CREATE TABLE Custom Role eric

A database role enables easier management of users and permissions on the database level.

To create a database role, you need to create an instance of an SMO DatabaseRole first:

$dbrole = New-Object Microsoft.SglServer.Management.Smo.DatabaseRole
-ArgumentList $database, "Custom Role"
Sdbrole.Create ()

The next step is to identify what permissions this group needs to have. You will need to create
a different permission set for each type of securable that you want to assign permissions to.

In our recipe, we created two permission sets. The first one is at the schema level, allowing
the database user to use the SELECT statement against all objects belonging to the
HumanResources schema:

#icreate a permission set to contain SELECT permissions
#for the HumanResources schema

239

Security

Spermissionsetl = New-Object Microsoft.SglServer.Management.
Smo.ObjectPermissionSet ([Microsoft.SglServer.Management . Smo.
ObjectPermission] : :Select)

Spermissionsetl.Add([Microsoft.SglServer.Management.Smo.
ObjectPermission] : :Select)

Shrschema = $database.Schemas ["HumanResources"]
Shrschema.Grant ($permissionsetl, $dbrole.Name)

Our second permission set pertains to the database securable, allowing CREATE and ALTER
for the AdventureWorks2008R2 database:

#icreate another permission set that contains

#CREATE TABLE and ALTER on this database

Spermissionset2 = New-Object Microsoft.SglServer.Management.Smo.
DatabasePermissionSet ([Microsoft.SglServer.Management.Smo.
DatabasePermission] : :CreateTable)

Spermissionset2.Add ([Microsoft.SglServer.Management.Smo.
DatabasePermission] : :Alter)

$database.Grant ($permissionset2, $dbrole.Name)

The last step in our recipe is to add users to this role. This step does not need to follow
granting permissions. It can be completed as soon as the role is set up:

#to add member

#assume eric is already a user in the database
Susername = "eric"

Sdbrole.AddMember (Susername)

To confirm the settings, we use PowerShell to target this specific role. We use the
EnumDatabasePermissions method of the SMO database class to display the
PermissionState, PermissionType, and Grantee properties. In addition, we
display the members of this database role by using the EnumMembers method of
the SMO Role class:

#confirm permissions

Sdatabase.Roles [$Srolename] |

ForEach-Object ({
Scurrentrole = $_
$database.EnumDatabasePermissions ($_.Name) |
Select PermissionState, PermissionType, Grantee,
@{N="Members" ;E={$Scurrentrole.EnumMembers () }}

b

Format-Table -AutoSize

See also

» The Creating a database user recipe

240

Chapter 4

Fixing orphaned users

This recipe shows how you can remap orphaned database users to valid logins.

Getting ready

Let us create an orphaned user to use in this recipe. Open up SQL Server Management
Studio, and execute the following T-SQL statements:

USE [master]

GO

CREATE LOGIN [marymargaret]
WITH PASSWORD=N'P@ssword',
DEFAULT_DATABASE:[master],
CHECK_ EXPIRATION=OFF,
CHECK POLICY=OFF

GO

USE [AdventureWorks2008R2]
GO

CREATE USER [marymargaret]
FOR LOGIN [marymargaret]

GO

USE [master]

GO

DROP LOGIN [marymargaret]
GO

-- create another login, this will generate a
-- different SID

CREATE LOGIN [marymargaret]

WITH PASSWORD=N'P@ssword',
DEFAULT_DATABASE:[master],

CHECK_ EXPIRATION=OFF,

CHECK_ POLICY=OFF

This code has created an orphaned user called marymargaret in the
AdventureWorks2008R2 database. Although we have recreated a login with the same name,
this would generate a different Security ID (SID), thus leaving the database user orphaned.

241

Security

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name

SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

Sdatabasename = "AdventureWorks2008R2"
Sdatabase = S$server.Databases[$databasename]
$loginname = "marymargaret"

Susername = "marymargaret"

Suser = Sdatabase.Users[Susername]

#display current status
Suser | Select Parent, Name, Login, LoginType, UserType

When the script successfully finishes executing, you should see a screen similar to
this. We can confirm that marymargaret is an orphaned user because the Login
value in the result is blank, and the UserType is NoLogin:

Parent : [AdwventureWorks2008R2]
Name ' marymargaret
Login

LoginType : SglLogin
UserType : MolLogin

4. Let's fix the orphaned user by remapping it to the new valid login. Note that we are
going to use a combination of T-SQL and the Invoke-Sglcmd cmdlet to accomplish
the remapping, because of some issues with SMO, which are discussed in the
There's more... section.

Squery = "ALTER USER $(Susername) WITH LOGIN=$ (Sloginname)"
Invoke-Sglcmd -ServerInstance SinstanceName -Query S$Squery
-Database $databasename

Start-Sleep -Seconds 1

242

Chapter 4

#display current status
Suser.Refresh()
Suser | Select Parent, Name, Login, LoginType, UserType

Parent : [AdventurewWorksZ2008R2]
Mame : marymargaret

Login : marymargaret
LoginType : SqlLogin

UserType : SqlLogin

An orphaned user is a database user that is not mapped to a valid login anymore. This may
stem from a number of scenarios, but more often, it happens when you move a database
from server to server, for example, from production to development.

To fix an orphaned user, you need to remap this orphaned user to a valid, recognized login in
your instance. The core of the solution lies in these statements:

Squery = "ALTER USER $(Susername) WITH LOGIN=$ ($Sloginname)"
Invoke-Sglcmd -ServerInstance SinstanceName -Query Squery -Database
S$databasename

We acquired handles to the User objects merely to display the status of the user. While it's
still orphaned, the UserType will indicate NoLogin.

Following the patterns of the previous recipes, you may have thought that we should be able
to use SMO to fix our orphaned user. This snippet of code should allow us to remap the user:

#unfortunately this doesn't work
Suser.Login = "marymargaret"
Suser.Alter ()

Suser.Refresh()

The code makes sense syntax-wise, however when you execute this, it will give an exception:

System.Management.Automation.MethodInvocationException: Exception calling

"Alter" with "0" argument(s): "Alter failed for User 'marymargaret'. "
--->Microsoft.SglServer.Management.Smo.FailedOperationException: Alter
failed for User 'marymargaret'. --->Microsoft.SglServer.Management.

Smo.SmoException: Modifying the Login property of the User object is not
allowed. You must drop and recreate the object with the desired property.

243

Security

This error complains that the Login property cannot be modified unless the User object is
dropped. Therefore to make it work using SMO, we will need to drop and recreate the database
user. Dropping and recreating can work to an extent, but you will have to remember to reassign
all the permissions and roles to this user. For some situations, this may not be the ideal solution.

» The Listing logins, users, and database mappings recipe

Creating a credential

This recipe goes through the code needed for creating a SQL Server credential.

Getting ready

In this recipe, we create a credential for a domain account that has access to certain files
and folders in our system, QUERYWORKS\ filemanager. The equivalent T-SQL for what we
are trying to accomplish is:

CREATE CREDENTIAL [filemanagercred]
WITH IDENTITY = N'QUERYWORKS\filemanager',
SECRET = N'YourSuperStrongPassword'

You can substitute this with another known Windows account that you have in
your environment.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name

SinstanceName = "KERRIGAN"

Sserver = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

$identity = "QUERYWORKS\filemanager"
Scredentialname = "filemanagercred"
if ($server.Credentials.Contains ($Scredentialname))

Chapter 4

Sserver.Credentials [$Scredentialname] .Drop ()

Scredential=New-Object "Microsoft.SglServer.Management.Smo.
Credential" $server, Scredentialname

Scredential.Create($Sidentity, "YourSuperStrongPassword")

#list credentials
Sserver.Credentials

When the script has been successfully executed, you should see a screen similar to
the following:

Name

filemanagercred

This should confirm that the credential has been created.

A credential in SQL Server allows a server principal to connect to resources outside of SQL
Server, using a different identity or username/password combination. This is often used
to map SQL Server logins to a Windows account needed to access files/folders/programs
outside of SQL Server.

Creating a credential in PowerShell is short and straightforward. To create a credential, you
will need to know the username and password of the external account that you want to use
as a credential:

Scredential=New-Object "Microsoft.SglServer.Management.Smo.Credential"
$server, S$credentialname
Scredential.Create($identity, "YourSuperStrongPassword")

You may not want to hardcode the password in your script. In that case, you can use the
Get-Credential cmdlet to capture the password.

The Get-Credential cmdlet is used and discussed further
i in the Change SQL Server service account recipe.

The Creating a proxy recipe
The Changing SQL Server service account recipe

245

Security

Creating a proxy

In this recipe, we will create a SQL Server proxy.

Getting ready

In this recipe, we will map out our SQL Server Agent service account (QUERYWORKS\
sglagent) to the credential we created in the previous recipe, filemanagercred.
We are also going to grant this proxy with rights to run the PowerShell agent steps and
operating system (CmdExec) steps. The equivalent T-SQL statements of what we are
trying to achieve are as follows:

EXEC msdb.dbo.sp_add proxy

@proxy name = N'filemanagerproxy',

@credential_name = N'filemanagercred',

@enabled = 1,

@description = N'Proxy Account for PowerShell Agent Job steps'

EXEC msdb.dbo.sp grant_login to_ proxy
@proxy name = N'filemanagerproxy',
@login name = N'QUERYWORKS\sglagent'

-- PowerShell subsystem

EXEC msdb.dbo.sp_grant proxy to subsystem
@proxy name = N'filemanagerproxy',
@subsystem id = 12

-- CmdExec subsystem

EXEC msdb.dbo.sp_grant proxy to subsystem
@proxy name = N'filemanagerproxy',
@subsystem id = 12

You can substitute this with known SQL Server principals and credentials in your environment.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

246

Chapter 4

#ireplace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Add the following script and run it:

Sproxyname = "filemanagerproxy"
Scredentialname = "filemanagercred"
Sjobserver = $server.JobServer

if ($jobserver.ProxyAccounts [$proxyname])

{

Sjobserver.ProxyAccounts [$proxyname] .Drop ()

Sproxy=New-Object "Microsoft.SglServer.Management.Smo.Agent.
ProxyAccount" $jobserver, $proxyname, $credentialname, S$true,
"Proxy Account for PowerShell Agent Job steps"

$proxy.Create ()

#add sqgl server agent account - QUERYWORKS\sglagent
Sagentlogin = "QUERYWORKS\sglagent"

Sproxy.AddLogin ($agentlogin)

Sproxy.AddSubSystem([Microsoft.SglServer.Management .Smo.Agent.
AgentSubsystem] : : PowerShell)

Sproxy.AddSubSystem([Microsoft.SglServer.Management .Smo.Agent.
AgentSubsystem] : : CmdExec)

#confirm, list proxy accounts
$jobserver.ProxyAccounts |
ForEach-Object ({

Scurrproxy = $_
$subsytems = ($currproxy.EnumSubSystems () |

Select -ExpandProperty Name) -Join ","
$currproxy |

Select Name, CredentialName, CredentialIldentity,
@{N="Subsystems" ;E={$subsytems}}

I

Format-Table -AutoSize

247

Security

When the script has been successfully executed, you should see a screen similar
to this. This should confirm that the proxy has been created and subsystems have
been assigned.

Name CredentialName CredentialIdentity Subsystems

filemanagerproxy filemanagercred QUERYWORKS\filemanager CmdExec,PowerShell

The first step is to create an SMO proxy instance:

Sproxy=New-Object "Microsoft.SglServer.Management.Smo.Agent.
ProxyAccount" $jobserver, $proxyname, S$credentialname, S$Strue, "Proxy
Account for PowerShell Agent Job steps"

Sproxy.Create ()

To create a proxy, you will need two pieces of information—the server principal (login) you want
to use, and the SQL Server credential to map it to. In our recipe, we mapped our SQL Server
Agent service account QUERYWORKS\ sglagent to a domain account called QUERYWORKS\
filemanager via the filemanagercred credential.

Sagentlogin = "QUERYWORKS\sglagent"
Sproxy.AddLogin ($Sagentlogin)

In SQL Server, we also need to narrow down on which specific subsystems the proxy can be
used:

Sproxy.AddSubSystem([Microsoft.SglServer.Management .Smo.Agent.
AgentSubsystem] : : PowerShell)

Sproxy.AddSubSystem([Microsoft.SglServer.Management .Smo.Agent.
AgentSubsystem] : : CmdExec)

In our recipe, we specified the PowerShell and CmdExec subsystems. Other common
options include TransactSQL, ActiveScripting, AnalysisCommand, AnalysisQuery,
and SSIs.

To confirm, we iterate through all ProxyAccounts, and we also use the method
EnumSubsystems of the Microsoft.SglServer.Management .Smo.Agent .
ProxyAccount class to display which subsystems are tied to a proxy.

#iconfirm, list proxy accounts
$jobserver.ProxyAccounts |
ForEach-Object {

Scurrproxy = $

248

Chapter 4

$subsytems = ($currproxy.EnumSubSystems() |

Select -ExpandProperty Name) -Join ","
$currproxy |
Select Name, CredentialName, Credentialldentity,
@{N="Subsystems" ;E={$subsytems}}

I

Format-Table -AutoSize
You can find the complete enumeration values from MSDN:

http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management . smo.agent .agentsubsystem.aspx

There's more...

You will often encounter the need to use proxies when you have some principals that need to
access external resources, but you don't want to grant them those extra permissions outside of
SQL Server. One common scenario is with your SSIS packages. SQL Server Agent would usually
not have the extra rights to access files and folders. To avoid granting these extra rights, you will
need to map the agent account to another account that already has these rights.

See also

» The Creating a credential recipe

249

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.agentsubsystem.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.agentsubsystem.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.agentsubsystem.aspx

Advanced
Administration

In this chapter, we will cover:

» Listing facets and facet properties

» Listing policies

» Exporting a policy

» Importing a policy

» Creating a condition

» Creating a policy

» Evaluating a policy

» Enabling/disabling change tracking

» Running and saving a profiler trace event
» Extracting the contents of a trace file

» Creating a database master key

» Creating a certificate

» Creating symmetric and asymmetric keys

» Setting up Transparent Data Encryption (TDE)

Advanced Administration

Introduction

The most recent versions of SQL Server have seen new features that can help IT professionals
get a better handle on the instances and databases they are managing. Policies can now be
created on SQL Server, and applied to single or multiple instances, to ensure compliance of
settings and configurations with company rules. SQL Server also supports different levels

of encryption, including cell-level or column-level encryption, and database-level encryption.
PowerShell can help with setting up security policies, or enabling Transparent Database
Encryption (TDE) for encrypting your whole database. In this chapter, we will also look at

how we can work with SQL Server Profiler trace files and trace events.

Listing facets and facet properties

In this recipe, we will list all available facets and their properties.

How to do it...

4. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

5. Import the SQL.PS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

6. Add the following script and run:

[Microsoft.SqlServer.Management .Dmf.PolicyStore] : :Facets |
ForEach-Object ({
Sfacet = $_
$facet.FacetProperties |
Select @{N="FacetName";E={S$facet.Name}},
@{N="PropertyName";E={$_.Name}},
@{N="PropertyType";E={$_.PropertyType}}
b

Format-Table

When the script successfully finishes executing, the resulting screen should
display all the facets and their properties.

252

FacetMName
ApplicationRole
ApplicationRole
ApplicationRole
ApplicationRole
ApplicationRole
Asymmetrickey
AsymmetricKey
AsymmetricKey
Asymmetrickey
AsymmetricKey
AsymmetricKey
Asymmetrickey
AsymmetrickKey
AsymmetricKey
Asymmetrickey
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit
Audit

PropertyName
CreateDate
Datel astModified

ID

Defaultschema

Name

1D
KevEncryptionAlgorithm
KeyvLength

Owner
PrivateKeyEncryptionType
PublicKey

Sid

Thumbprint

ProviderName

Name

CreateDate
DatelLastModified
DestinationType
Enabled
F1ileMame
FilePath

Guid

ID
MaximumFile5ize

PropertyType

System.DateTin
System.DateTin
System.Int32

System.String
System. String
System.Int32

Microsoft.Sqls
System. Int32

System. String
Microsoft.Sqls
System.Byte[]
System.Byte[]
System. Bytel]
System.String
System. String
System. DateTin
System.DateTin
Microsoft.Sqls
System. Boolear
System.String
System.String
System.Guid

System. Int32

System. Int32

Chapter 5

Facets are introduced with SQL Server 2008's Policy Based Management (PBM). Facets are

defined in MSDN as follows:

a set of logical properties that model the behavior or characteristics for certain
types of managed targets.

Simply, these are the SQL Server components manageable through PBM.

For exploring facets, you need to connect to the PolicyStore parameter, using the

Microsoft.SglServer.Management .Dmf.PolicyStore hamespace.

[Microsoft.SglServer.Management .Dmf .PolicyStore] : : Facets

Note that DMF is the old PBM name, which stands for Declarative Management Framework.

In this recipe we iterate through all the facets, and display the facet name, facet property

name, and type:

[Microsoft.SglServer.Management .Dmf.PolicyStore] : :Facets |

ForEach-Object {

253

Advanced Administration

For each facet we extract the respective facet properties:

[Microsoft.SqlServer.Management .Dmf.PolicyStore] : :Facets |
ForEach-Object ({
Sfacet = $_
$facet.FacetProperties |
Select @{N="FacetName";E={S$facet.Name}},
@{N="PropertyName" ;E={$_.Name}},
@{N="PropertyType" ;E={$_.PropertyType}}

I

Format-Table
To explore facets more, use the $facet object and pipe it to Get -Member.

$facet | Get-Member

» The Listing policies recipe
» The Creating a policy recipe

» Dan Jones, Project Manager on the SQL Server Manageability team at Microsoft,
explains facets in his blog post:

http://blogs.msdn.com/b/sglpbm/archive/2008/05/24/facets.aspx

Listing policies

In this recipe, we will list policies deployed in our SQL Server instance.

Getting ready

Check which policies are being used in your environment using SQL Server Management
Studio. Connect to SSMS, and expand Management | Policy Management | Policies:

http://blogs.msdn.com/b/sqlpbm/archive/2008/05/24/facets.aspx
http://blogs.msdn.com/b/sqlpbm/archive/2008/05/24/facets.aspx

Object Explorer

Comect~ %) 3 = T 2] 3§

1 Databaszes
1 Security
[J Server Objects
3 Replication
[= 4 Management

3 Availability Groups

4 Data-tier Applications

= % Policy Management

= [Polides
[System Paolicies

% Guest Permissions
":._% PW Expiry

= 3 Conditions
3 System Conditions

. Guest

—jﬁr Trustworthy
—'ﬁ: User or Model

= L.ﬂ KERRIGAN (SQL Server 11.0. 1440 - KERRIGAN \Administratat

gy SOL Server Password Policy

—'ﬁ: Database Owner Mot sysadmin

J_ﬁr Has Mo Database Access

—:ﬁ IsPasswordExpired

"ﬁ: Password Policy Enforced

—jﬁr S0L Server 2005 or a Later Version
—:ﬁr SQL Server Authenticated Logins

Chapter 5

These are the same policies you should get when you run the PowerShell script in this recipe.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows

3.

PowerShell | Windows PowerShell ISE.
Import the SQL.PS module as follows:

#import SQL Server module

Import-Module SQLPS -DisableNameChecking

Add the following script and run:

$connectionstring = "server='KERRIGAN';Trusted Connection=true"

$conn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.SglStore

Connection ($connectionstring)

255

Advanced Administration

#NOTE notice how the namespace is still called DMF

#DMF - declarative management framework

#DMF was the old reference to Policy Based Management
$PolicyStore = New-Object Microsoft.SglServer.Management .DMF.
PolicyStore ($Sconn)

$PolicyStore.Policies |

Select Name, CreateDate, Condition, ObjectSet, Enabled |
Format-List

When the script successfully finishes executing, the resulting screen should display
all the policies registered in your instance:

Name : Data synchronization state of awvailability dat
CreateDate : 6/24/2011 6:52:14 PM

Condition : Database data synchronization state check
ObjectSet : Data synchronization state of awvailability dat
Enabled : False

Name : Data synchronization state of availability rep
CreateDate : 6/24/2011 6:52:14 PM

Condition : Replica synchronization check

ObjectSet : Data swnchronization state of availability rep
Enabled : False

Name 1 PW Expiry

CreateDate : 2/5,/2012 8:22:05 AM

Condition : IsPasswordExpired

ObjectSet : PW Expiry_ObjectSet

Enabled : False

Name : Role of availabiTity replica 1s healthy
CreateDate : 6/24/2011 6:52:14 PM

Condition Role check

To list the policies in your instance, you need to connect to the PolicyStore parameter.

Note that the PolicyStore parameter requires a different type of Connection compared to
the SMO server connections we have been making in the previous recipes. To connect to the
PolicyStore parameter, you first need to create an Sfc.SglStoreConnection object:

$connectionstring = "server='KERRIGAN';Trusted Connection=true"

Sconn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.
SglStoreConnection ($connectionstring)

256

Chapter 5

Once Sfc.sglstoreConnection has been established, you can connect to the
PolicyStore parameter:

#NOTE notice how the namespace is still called DMF

#DMF - declarative management framework

#DMF was the old reference to Policy Based Management
$PolicyStore = New-Object Microsoft.SglServer.Management .DMF.
PolicyStore ($conn)

Once you have a handle to the PolicyStore parameter, you can use the Policies object
and list Name, CreateDate, and Condition—among other properties:

$PolicyStore.Policies |
Select Name, CreateDate, Condition, ObjectSet, Enabled |
Format-List

» The Listing facets and facet properties recipe
» The Creating a facet recipe
» Tolearn more about SqglStoreConnection, check out this MSDN article:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
management .sdk.sfc.sglstoreconnection.aspx

Exporting a policy

In this recipe, we will export a policy to an XML file using PowerShell.

Getting ready

We will export a policy called PW Expiry to an XML file. To do this we must first create this
policy by performing the following steps:

1. Login to SQL Server Management Studio, and expand Management |
Policy Management.

2. Right-click on Conditions and select New Condition.

257

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.sdk.sfc.sqlstoreconnection.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.sdk.sfc.sqlstoreconnection.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.sdk.sfc.sqlstoreconnection.aspx

Advanced Administration

3. Create a new condition:

1.

2
3.
4

Set Name to PW Expiry Condition.

Select Login Options for Facet.

Use @PasswordExpirationEnabled = True for Expression.
Click on OK when done.

“» Create New Condition - PW Expiry Condition
'ﬁ' Ready

Select a page

% General
%A Description

QSaipt - L’jHeIp

Mame: IPW Expiry Condition

Facet: ILogin Options

Expression:

AndOr | Field | | Operator | Value

3 @PasswordExpirationEnabled | = True

#* |[Click here to add a dause

4. Right-click on Policies and select New Policy.

5. Create a new policy:

1.
2.
3.

258

Type PW Expiry for Name.
Use PW Expiry Condition for Check condition.

Leave the checkbox for Against targets checked, since we want to target
every login.

Leave Evaluation Mode to On demand.
Leave Server restriction to None.

Click on OK when done.

Chapter 5

Create New Policy - PW Expiry ;Iglll

‘S Script - | m Help

jj Description

Name: IPW Expiry

I~ Enzbled

Check condition: IPW Expiry Condition j - |
Against targets:

¥ Every - Login

Connection

KERRIGAM
[KERRIGAN'Administrator]

View connection properties

Evaluation Mode: IO” demand j
Ready
Server restriction |

Alternatively, you can substitute this with another policy that exists in your system.

How to do it...

To export a policy to an XML file, perform the following steps:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQL.PS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

$connectionstring = "server='KERRIGAN';Trusted Connection=true"

Sconn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.SglStore
Connection ($connectionstring)

259

Advanced Administration

#NOTE this is still called DMF, which stands for
#PBM's old name, Declarative Management Framework

$policystore = New-Object Microsoft.SglServer.Management .DMF.
PolicyStore ($Sconn)

#change this to your policy name
Spolicyname = "PW Expiry"
Spolicy = S$policystore.Policies[$policyname]

#create an XML writer, to enable us to

#write an XML file

$folder = "C:\Temp\"

Spolicyfilename = "$ ($policy.Name) .xml"
$fullpath = Join-Path $folder S$policyfilename

Sxmlwriter = [System.Xml.XmlWriter]::Create($fullpath)
Spolicy.Serialize ($xmlwriter)
Sxmlwriter.Close ()

Policies are stored as XML documents, so these policies can be easily exported as XML files.
To export a policy, you first need to get a handle to the PolicyStore parameter:

$policystore = New-Object Microsoft.SglServer.Management .DMF.
PolicyStore ($Sconn)

Once the connection to the PolicyStore parameter is established, you can get a handle to
the policy you want to export:

Spolicyname = "PW Expiry"
Spolicy = S$Spolicystore.Policies[$policyname]

Exporting the policy requires writing the contents of the policy to an XML file in your file
system. We will need to use XMLWriter in this case:

#create an XML writer, to enable us to

#write an XML file

$folder = "C:\Temp\"

Spolicyfilename = "$($policy.Name) .xml"
$fullpath = Join-Path $folder S$policyfilename

Sxmlwriter = [System.Xml.XmlWriter]::Create($fullpath)

Spolicy.Serialize ($Sxmlwriter)
Sxmlwriter.Close ()

260

Chapter 5

Once that's done, double-check the file that was created. When you open it, you should see
the XML structure used to store your policies.

To export a policy from SQL Server Management Studio, you can right-click on a policy and
select Export Policy as shown in the following screenshot:

= ¥ Policy Management 1
= 3 Polices
| System Puolices

% Guest Permissions

Py B

gy SOL Se Mew Policy. ..
= [Conditions Evaluate
1 Systen
fﬁ- Datab: View History
i Guest Enable
=f. Has Nc
" Disabl
“f. IsPass e
—‘-ﬁr Pa=zzwn E}l.'l:lﬂrt PD"L‘&I’. 2=

Script Policy as

See also

» The Listing policies recipe
» The Importing a policy recipe

Importing a policy

This recipe will show how you can import a policy stored as an XML file into SQL Server.

Getting ready

In this recipe, we will use an XML policy that comes with the default SQL Server installation.
This policy is called Guest Permissions.xml, and is stored in C:\Program Files
(x86) \Microsoft SQL Server\110\Tools\Policies\DatabaseEngine\1033

Feel free to substitute this with a policy you have available in your system.

261

Advanced Administration

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

$connectionstring = "server='KERRIGAN';Trusted Connection=true"

Sconn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.
SglStoreConnection ($connectionstring)

#connect to policystore
$policyStore = New-Object Microsoft.SglServer.Management .DMF.
PolicyStore ($conn)

#you can replace this with your own file

$policyXmlPath = "C:\Program Files (x86)\Microsoft SQL Server\110\
Tools\Policies\DatabaseEngine\1033\Guest Permissions.xml"

$xmlReader = [System.Xml.XmlReader] ::Create ($policyXmlPath)

#ready to import
SpolicyStore.ImportPolicy ($xmlReader, [Microsoft.SglServer.
Management .Dmf . ImportPolicyEnabledState] : :Unchanged, S$true, S$true)

#list policies to confirm
SpolicyStore.Policies

All the loaded policies should be listed when the script has finished executing.
Check that the Guest Permissions policy is included in the list.

Name Category Created Enabled
Guest Permissions Microsoft Best... 2/11,/2012 11:24 AM False
A11 availability replicas a... Warnings in av... 6/24/2011 6:52

All availability replicas a... Warnings in av... 6/24/2011 6:52

A1l availability replicas h... Warnings in av... 6/24/2011 6:52

A1l synchronous replicas ar... Warnings in av... 6/24/2011 6:52

Availability database 15 jo... Warnings in av... 6/24/2011 6:52

Availability database 15 no... Warnings in av... 6/24/2011 6:52

Availability group is online Errors in avai... 6/24,/2011 6:52

Availability group is ready... Errors in avai... 6/24/2011 6:52

Availability replica is con... Errors in avai... 6/24/2011 6:52

Data synchronization state ... Warnings in av... 6/24/2011 6:52

262

Chapter 5

To import a policy defined in an XML file, you will first need to connect to the
PolicyStore parameter.

$connectionstring = "server='KERRIGAN';Trusted Connection=true"

Sconn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.
SglStoreConnection ($connectionstring)

#connect to policystore

$policyStore = New-Object Microsoft.SglServer.Management .DMF.
PolicyStore ($conn)

You will also need to specify which file you want to import:

#you can replace this with your own file

$policyXmlPath = "C:\Program Files (x86)\Microsoft SQL Server\110\
Tools\Policies\DatabaseEngine\1033\Guest Permissions.xml"

You will need to load this using an XMLReader class, which we will pass to our import method:
$xmlReader = [System.Xml.XmlReader] ::Create ($policyXmlPath)

When you are ready to import, you can use the ImportPolicy method of the
PolicyStore object:

SpolicyStore.ImportPolicy ($xmlReader, [Microsoft.SglServer.Management.
Dmf . ImportPolicyEnabledState] : :Unchanged, S$true, S$true)

If you want to import all policies, you can get all the XML files from the default path for the
policies using the Get -ChildItem cmdlet. lterate through each file, and load each of them
using the ImportPolicy method.

$xmlPath = "C:\Program Files (x86)\Microsoft SQL Server\110\Tools\
Policies\DatabaseEngine\1033\"

Get-ChildItem -Path "$($xmlPath)=*.xml" |
ForEach-Object ({
$xmlReader = [System.Xml.XmlReader]::Create($.FullName)

SpolicyStore.ImportPolicy ($xmlReader, [Microsoft.SglServer.
Management .Dmf . ImportPolicyEnabledState] : :Unchanged, S$true, $true) |
Out-Null

263

Advanced Administration

There's more...

The ImportPolicy method accepts four parameters:

>

XMLReader that contains the policy
ImportEnabledState
A Boolean value for overwriteExistingPolicy

A Boolean value for overwriteExistingCondition

See also

>

>

The Listing policies recipe
The Exporting a policy recipe

Creating a condition

In this recipe, we will create a condition to be later used programmatically for a policy.

Getting ready

In this recipe, we will create a condition called xp _cmdshell is disabled, which checks
the Server Security facet, XPCmdShellEnabled

How to do it...

1.

Open the PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

Import the SQL.PS module, and create a new connection object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

$connectionstring ="server='KERRIGAN';Trusted Connection=true"

Sconn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.
SglStoreConnection ($connectionstring)

Spolicystore = New-Object Microsoft.SglServer.Management .DMF.
PolicyStore ($conn)

264

Chapter 5

3. Add the following script and run:

$conditionName = "xp cmdshell is disabled"

if (spolicystore.Conditions[$conditionName])

{

Spolicystore.Conditions [$conditionName] .Drop ()

#facet name

#twe are retrieving facet name in this manner because
#some facet names are different from the display names
#note this is PowerShell V3 syntax Where-Object syntax
$selectedfacetdisplayname = "Server Security"

$selectedfacet = [Microsoft.SglServer.Management.Dmf.
PolicyStore] : :Facets |
Where-Object DisplayName -eq $selectedfacetdisplayname

#if you want to use PowerShell V2 syntax, use the
#following for the Where-Object clause:
#Where-Object

#$.DisplayName -eq $selectedfacetdisplayname

#}

#display, for visual reference
$selectedfacet .Name

#icreate condition

Scondition = New-Object Microsoft.SglServer.Management .Dmf.
Condition ($conn, S$conditionName)
Scondition.Facet = $selectedfacet.Name

#a condition consists of a facet, an operator,

#and a value to compare to

Sop = [Microsoft.SglServer.Management.Dmf.OperatorType] ::EQ

Sattr = New-Object Microsoft.SglServer.Management.Dmf.ExpressionNo
deAttribute ("XPCmdShellEnabled")

$value = [Microsoft.SglServer.Management.Dmf.ExpressionNode] : :Cons
tructNode ($false)

#create the expression node

#this is equivalent to "@XPCmdShellEnabled = false"
SexpressionNode = New-Object Microsoft.SglServer.Management.Dmf.
ExpressionNodeOperator ($op, Sattr, $value)

265

Advanced Administration

266

#display expression node that was constructed
SexpressionNode

#assign the expression node to the condition, and create
Scondition.ExpressionNode = $expressionNode
Scondition.Create ()

#confirm by displaying conditions in PolicyStore
$policystore.Conditions |

Where Name -eq $conditionName |

Select Name, Facet, ExpressionNode |
Format-Table -AutoSize

When the script finishes, you should see the new condition displayed in the
resulting output:

Name Facet ExpressionNode

xp_cmdshell is disabled IServerSecurityFacet @xPCmdShellEnabled = False()

Confirm visually from SQL Server Management Studio:

1. Connect to SSMS.

2. Go to Management and expand Policy Management | Conditions:

[= [d Management
3 Awailability Groups
& Data-tier Applications
B 4 Policy Management
[= [Policies
[System Paolicies

% Guest Permissions

% PW Expiry
gy SQL Server Password Policy
= [Conditions
[System Conditions
—‘_ﬂ Database Owner Mot sysadmin
—‘_ﬂ Guest
8 Has No Database Access
—‘_ﬂ I=PasswordExpired
—‘_ﬁ Password Policy Enforced
—‘_ﬁr S0L Server 2005 or a Later Version
—‘_ﬁ SQL Server Authenticated Logins
—‘_ﬁ Trustworthy
—‘_‘.EL Lzer or Model
—‘_ﬂ wp_cmdshell is disabled

Chapter 5

3. Double-click on the xp_cmdshell is disabled condition.

ﬁs::ript - MHEIp ;

Mame: |}q:|_u::rndshel| iz disabled

Facet: IServer Security

Expression
AndCr | Field | | Dperamll Value
@XPCmdshellEnabled "'| = False

3
it

Creating a condition for policy-based management requires creating what is called an
expression node. This is the expression that will be utilized by policies, and will be evaluated
to be true or false.

#a condition consists of a facet, an operator,
#and a value to compare to
Sop = [Microsoft.SglServer.Management.Dmf.OperatorType] : :EQ

Sattr = New-Object Microsoft.SglServer.Management.Dmf.
ExpressionNodeAttribute ("XPCmdShellEnabled")

Svalue = [Microsoft.SglServer.Management.Dmf.ExpressionNode] ::
ConstructNode ($false)

To put these together, we use the ExpressionNodeOperator class of the Microsoft.
SglServer.Management .Dmf namespace to construct the final expression node. The
constructor, or special method to create a new object, of this class accepts an operator
type, a left expression, and a right expression.

#icreate the expression node
#this is equivalent to "@XPCmdShellEnabled = false"

SexpressionNode = New-Object Microsoft.SglServer.Management .Dmf.
ExpressionNodeOperator ($Sop, Sattr, $value)

Some conditions are straightforward, and will not require an ExpressionNodeOperator
class to construct them. For example:

» "@Size <= 100"

» "@ID >= 4"

» "Name = 'sglagent'"

267

Advanced Administration

This expression node is what we need to assign to the condition object.

#assign the expression node to the condition, and create
Scondition.ExpressionNode = $expressionNode

Once the expression has been assigned, we can now invoke the Create method of the
Microsoft.SglServer.Management .Dmf.Condition class to create the condition
in SQL Server:

Scondition.Create ()

» The Creating a policy recipe
» Here are a few useful links to ExpressionNodes and ExpressionNodeOperator.
o ExpressionNode:
http://msdn.microsoft.com/en-us/library/microsoft.
sglserver.management .dmf .expressionnode (v=sgl.110) .aspx
o ExpressionNodeOperator:

http://msdn.microsoft.com/en-us/library/
cc286169 (v=sgl.110) .aspx

Creating a policy

In this recipe, we will create a policy programmatically using PowerShell.

Getting ready

In this recipe, we will use a condition called xp _cmdshell is disabled, which we created in
a previous recipe. Feel free to substitute this with a condition that is available in your instance.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module, and create a new connection object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

268

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.dmf.expressionnode(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.dmf.expressionnode(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.dmf.expressionnode(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.dmf.expressionnode(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/cc286169(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/cc286169(v=sql.110).aspx

Chapter 5

$connectionstring = "server='KERRIGAN';Trusted Connection=true"

Sconn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.
SglStoreConnection ($connectionstring)

$policystore = New-Object Microsoft.SglServer.Management .DMF.
PolicyStore ($conn)

Add the following script and run:

$policyName = "xp cmdshell must be disabled"
$conditionName = "xp cmdshell is disabled"

if ($policystore.Policies[$policyName])

{

Spolicystore.Policies [$policyName] .Drop ()

#facet name this policy refers to
#note we are using PowerShell V3 syntax in
#Where-Object

$Sselectedfacetdisplayname = "Server Security"
$selectedfacet = [Microsoft.SglServer.Management.Dmf.
PolicyStore] : :Facets |

Where DisplayName -eq S$selectedfacetdisplayname

#if you want to use PowerShell V2 syntax, use the
#following for the Where-Object clause:
#Where-Object {$_.DisplayName -eq
#Sselectedfacetdisplayname}

#create objectset

#objectset represents a policy-based management set of objects
$objectsetName = "3 ($policyName)_ ObjectSet™"

Sobjectset = New-Object Microsoft.SglServer.Management.Dmf.
ObjectSet (Spolicystore, $objectsetName)

Sobjectset.Facet = S$selectedfacet.Name
Sobjectset.Create ()

#confirm, display objectset name

#again we are using PowerShell V3 simplified
#Where-Object syntax here

Sobjectset .Name

$policystore.ObjectSets |

Where Name -eq $objectsetName |

Format-List

269

Advanced Administration

#if using PowerShell V2, use
#Where {$_ .Name -eq $objectsetName} | Format-List

#create policy

$policy = New-Object Microsoft.SQLServer.Management.Dmf.Policy
($conn, $policyName)

#assumption here is conditions have been pre-created
#if not, see recipe for creating a condition
$policy.Condition=$conditionName

Spolicy.ObjectSet = $objectsetName

Spolicy.AutomatedPolicyEvaluationMode= [Microsoft.SglServer.
Management .Dmf . AutomatedPolicyEvaluationMode] : : None

Spolicy.Create ()

#confirm, display policies
#PowerShell V3 syntax
$policystore.Policies |
Where-Object Name -eqg S$policyName

#PowerShell V2
#Where-Object {$_ .Name -eq $policyName}

To start, you need to create a Policy instance:

#create policy

$policy = New-Object Microsoft.SQLServer.Management.Dmf.Policy
($conn, $policyName)

Before you create a policy, you need to make sure you have available condition(s) you can use to
attach to your policy. In our recipe, we will use the condition xp cmdshell is disabled.

The xp_cmdshell is disabled condition is created
i in the Create a condition recipe.
To attach a condition to a policy, you can assign this to the policy's Condition property.

#assumption here is conditions have been pre-created
Spolicy.Condition=$conditionName

PBM also requires an object set. An object set is defined in MSDN as an object that represents
a policy-based management set of objects. The object set provides the target objects for the
policy, in our case, our facet.

270

Chapter 5

#create objectset

#objectset represents a policy-based management set of objects
$objectsetName = "3 ($policyName)_ ObjectSet™"

Sobjectset = New-Object Microsoft.SglServer.Management.Dmf.
ObjectSet (Spolicystore, $objectsetName)

Sobjectset.Facet = S$selectedfacet.Name

Sobjectset.Create ()

You will also need to specify what the evaluation mode is. The valid values for evaluation
mode are:

Evaluation mode Description

None No policy checking

Enforce Use DDL triggers to evaluate or prevent policy
violations

CheckOnChanges Use event notification to evaluate a policy when
changes happen

CheckOnSchedule Use SQL Server Agent to evaluate a policy based
on schedule

Not all facets support all possible evaluation modes. Most support OnDemand (ie, None)

and onSchedule. Aaron Bertrand posted a blog called Policy-Based Management : Which
facets support which evaluation methods? that provides a way to determine which evaluation
methods are supported by each facet (http://sglblog.com/blogs/aaron bertrand/
archive/2011/10/03/policy-based-management-which-facets-support-
which-evaluation-methods.aspx).

For our purposes, we will just choose None, or OnDemand:

Spolicy.AutomatedPolicyEvaluationMode= [Microsoft.SglServer.Management.
Dmf .AutomatedPolicyEvaluationMode] : :None

When ready, invoke the Create method of the policy object:

Spolicy.Create ()

» The Creating a condition recipe
» The complete EvaluationMode enumeration values can be found in:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
management . dmf .automatedpolicyevaluationmode (v=sgl.110) .aspx

271

http://sqlblog.com/blogs/aaron_bertrand/archive/2011/10/03/policy-based-management-which-facets-support-which-evaluation-methods.aspx
http://sqlblog.com/blogs/aaron_bertrand/archive/2011/10/03/policy-based-management-which-facets-support-which-evaluation-methods.aspx
http://sqlblog.com/blogs/aaron_bertrand/archive/2011/10/03/policy-based-management-which-facets-support-which-evaluation-methods.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.dmf.automatedpolicyevaluationmode(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.dmf.automatedpolicyevaluationmode(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.dmf.automatedpolicyevaluationmode(v=sql.110).aspx

Advanced Administration

Evaluating a policy

In this recipe, we will evaluate a policy against our SQL Server instance.

Getting ready

In this recipe, we will evaluate the policy xp_cmdshell must be disabled, which we
created in a previous recipe. We also want to export this to an XML file, so we can see two
different ways of evaluating the policy. Use the Exporting a policy recipe to export the policy
xp_cmdshell must be disabled and save itin C:\Temp. Alternatively you can:

1. Loginto SQL Server Management Studio.

2. Go to Management | Policy Management and expand Policies.

3. Right-click on the policy xp_cmdshell must be disabled, and select Export Policy.
4. Save this policy in C: \Temp.

Feel free to substitute this with a policy that is available in your instance.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new connection object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

SinstanceName = "KERRIGAN"
$connectionstring = "server='KERRIGAN';Trusted Connection=true"

Sconn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.
SglStoreConnection ($connectionstring)

S$policystore = New-Object Microsoft.SglServer.Management .DMF.
PolicyStore ($conn)

3. Add the following script and run:

$policyName = "xp cmdshell must be disabled"

Spolicy = $policystore.Policies[$policyNamel

272

Chapter 5

#tevaluate using the Evaluate() method

Spolicy.Evaluate ([Microsoft.SglServer.Management .DMF.AdHocPolicyEv
aluationMode] : :Check, Sconn)

#icheck evaluation history
Write-Host "$("=" * 100) n Evaluation Histories™n $("=" * 100)"

S$policy.EvaluationHistories

#an alternative way to invoke a policy is

#to use the Invoke-PolicyEvaluation cmdlet instead

#of using the Evaluate () method

#however you need to have a handle to the actual XML file
#this alternative way allows you to capture the results
#which you can save to another XML file

#assuming we have this policy definition in

$file = "C:\Temp\S (SpolicyName) .xml"

Sresult = Invoke-PolicyEvaluation -Policy $file -TargetServer
SinstanceName

#display results
Write-Host "$("=" * 100) n Invocation Result™n $("=" * 100)"
Sresult

This is what your result should look similar to:

Evaluation Histories

ID Policy Name Result Start Date End Date Messages
15 xp_cmdshell must be disabled True 2/11/2012 12:58 PM 2,/11/2012 12:58 PM
16 xp_cmdshell must be disabled True 2/11/2012 1:10 PM 2/11/2012 1:11 PM
17 xp_cmdshell must be disabled True 2/11/2012 1:13 PM 2/11/2012 1:13 PM
18 xp_cmdshell must be disabled True 2/11/2012 1:18 PM 2/11/2012 1:18 PM
19 xp_cmdshell must be disabled True 2/11/2012 1:20 PM 2/11/2012 1:20 PM
20 xp_cmdshell must be disabled True 2/11/2012 1:21 PM 2/11/2012 1:21 PM
21 xp_cmdshell must be disabled True 2/11/2012 1:21 PM 2/11/2012 1:21 PM
22 xp_cmdshell must be disabled True 2/11/2012 1:22 PM 2/11/2012 1:22 PM
Results

1 xp_cmdshell must be disabled True 2/11/2012 1:22 PM 2,/11/2012 1:22 PM

273

Advanced Administration

In this recipe, we covered a couple of ways to evaluate a policy.
The first way is by using the Policy object. We first need to get a handle to the Policy object:

$policyName = "xp cmdshell must be disabled"
Spolicy = S$policystore.Policies[$policyName]

The Policy object has a method called Evaluate, which we can invoke as follows:

Spolicy.Evaluate ([Microsoft.SglServer.Management .DMF.
AdHocPolicyEvaluationMode] : : Check, $Sconn)

The Evaluate method returns a Boolean value—true if every object you evaluated the policy
against are in compliance to the policy, and false otherwise.

An alternative way to invoke a policy is by using the Invoke-PolicyEvaluation cmdlet.
You will need to provide the full path of the XML file that contains the policy. This cmdlet also
returns the result of the evaluation, also in XML format, which you can either display or save
to a file:

Sresult = Invoke-PolicyEvaluation -Policy $file -TargetServer
SinstanceName

To get more information about Invoke-PolicyEvaluation, type:
Get-Help Invoke-PolicyEvaluation
You will quickly find out that this cmdlet allows you to:

» Evaluate policies against your target objects
» Retrieve results in an XML format, which you can redirect to an XML file for storage

» Reconfigure objects in the target set that do not comply with the policy, if run in
Configure mode

» The Creating a policy recipe

274

Chapter 5

Enabling/disabling change tracking

This recipe shows you how you can enable and disable change tracking to your target database.

Getting ready

In this recipe, we will use a test database called TestDB. If you don't already have this
database, log in to SQL Server Management Studio and execute the following T-SQL code:

IF DB_ID('TestDB') IS NULL
CREATE DATABASE TestDB
GO

Check which of your databases have change tracking enabled. Connect to your instance using
SQL Server Management Studio, and type in this T-SQL statement:

SELECT
DB NAME (database id) AS 'DB',

*

FROM
sys.change tracking databases

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the sQLPS module, and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

Sdatabasename = "TestDB"
Sdatabase = $server.Databases [$databasename]

Sdatabase.ChangeTrackingEnabled
Sdatabase.ChangeTrackingEnabled = $true

275

Advanced Administration

Sdatabase.Alter ()
Sdatabase.Refresh ()
$database.ChangeTrackingEnabled

To disable change tracking, you just need to set the database property
ChangeTrackingEnabled to false, and invoke the Alter method again.

$database.ChangeTrackingEnabled = $false
Sdatabase.Alter ()

Change tracking is a database-level feature that can be turned on or off using the database
object's ChangeTrackingEnabled property. Once you get a handle to the database, you
can set this property to a true or false Boolean value, followed by an invocation of the
Alter method:

$database.ChangeTrackingEnabled
$database.ChangeTrackingEnabled = Strue
Sdatabase.Alter ()

There's more...

Change Tracking (CT) is a feature introduced in SQL Server 2008. It is a lightweight solution
that enables developers and administrators alike to detect if changes have been done to a
user table they are monitoring. This is a pretty lightweight solution, because it only tracks
those changes that have occurred, and does not keep track of all intermediate changes.

See also

» The Altering database properties recipe in Chapter 2, SQL Server and PowerShell
Basic Tasks

Running and saving a profiler trace event

In this recipe, we will run and save a profiler trace event using PowerShell.

Getting ready

To run and save a profiler trace event, we will need to use the x86 version of PowerShell and/or
PowerShell ISE. This is unfortunate, but some of the classes we need to use are only supported
in 32-bit mode.

276

Chapter 5

In this recipe, we will need to use the standard trace Template Definition File (TDF) as our
starting template for the trace we're going to run. This can be found in C: \Program Files
(x86) \Microsoft SQL Server\110\Tools\Profiler\Templates\Microsoft SQL
Server\110\Standard.tdf

For our purposes, we are also going to limit the number of events to 50.

How to do it...

1.

Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE (x86).

Import the SQL.PS module, and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
S$instanceName = "KERRIGAN"

Sserver = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Import additional libraries. These are needed to use our TraceFile and
TraceServer classes. We do this as follows:

#load ConnectionInfoExtended, this contains TraceFile class
[Reflection.Assembly] : :LoadWithPartialName ("Microsoft.SglServer.
ConnectionInfoExtended") |

Out-Null

#load ConnectionInfo, contains SglConnectionInfo class
[Reflection.Assembly] : :LoadWithPartialName ("Microsoft.SglServer.
ConnectionInfo") |

Out-Null

Add the following script and run:

#icreate SglConnectionInfo object,

#ispecifically required to run the traces

#ineed to specifically use the ConnectionInfoBase type
[Microsoft.SglServer.Management .Common.ConnectionInfoBase] Sconn =
New-Object Microsoft.SglServer.Management.Common.SglConnectionInfo
-ArgumentList "KERRIGAN"

Sconn.UseIntegratedSecurity = Strue

#icreate new TraceServer object

#The TraceServer class can start and read traces

Strcserver = New-Object -TypeName Microsoft.SglServer.Management.
Trace.TraceServer

277

Advanced Administration

#need to get a handle to a Trace Template
#in this case we are using the Standard template
#that comes with Microsoft

$standardTemplate = "C:\Program Files (x86)\Microsoft SQL
Server\110\Tools\Profiler\Templates\Microsoft SQL Server\110\
Standard.tdf"

Strcserver.InitializeAsReader (Sconn, $standardTemplate) | Out-Null
Sreceived = 0

#where do you want to write the trace?

#there we compose a timestamped file

$folder = "C:\Temp\"

$currdate = Get-Date -Format "yyyy-MM-dd hmmtt"
$filename = "$(SinstanceName) trace $($Scurrdate) .trc"
Soutputtrace = Join-Path $folder $filename

#number of events to capture
Snumevents = 10

#icreate new TraceFile object
#and initialize as writer
#The TraceFile class can read and write a Trace File

Strcwriter = New-Object Microsoft.SglServer.Management.Trace.
TraceFile

Strcwriter.InitializeAsWriter (Strcserver, Soutputtrace) | Out-Null

while (Strcserver.Read())

{
#write incoming trace to file
Strcwriter.Write() | Out-Null
Sreceived++

#we dont know how many columns are included
#in the template so we will have to loop if we
#want to capture and display all of them

#get number of columns

#we need to subtract 1 because column array
#is zero-based, ie index starts at 0

Scols = (Strcserver.FieldCount) -1

278

Chapter 5

#we'll need to dynamically create a hash to
#icontain the trace events

#because we need to dynamically build this hash
#based on number of columns included in a template,
#we'll have to store the code to build the hash
#as string first and then invoke expression

#to actually build the hash in PowerShell

$hashstr = "“$hash = ~$null; “n “$hash = @{ ‘“n"
for(si = 0;%$1i -le Scols; Si++)
{

Scolname = Strcserver.GetName ($i)

#add each column to our hash
#we will not capture the binary data
if (Scolname -ne "BinaryData")

{

Scolvalue = Strcserver.GetValue (Strcserver.
GetOrdinal (Scolname))

$hashstr += " "$($colname) "=""$ ($colvalue) " “n"

}

$hashstr += "}

#create the real hash
Invoke-Expression Shashstr

#display
Sitem = New-Object PSObject -Property Shash
$item | Format-List

if (Sreceived -ge $numevents)

{

break

Strcwriter.Close ()
Strcserver.Close ()

279

Advanced Administration

What you should see in your PowerShell ISE results pane is a stream of events that
are happening in SQL Server, much like what you would see if you were running SQL
Server Profiler.

Duration : 1111
ApplicationMame : 5QL Server Profiler - 77c05b3e-7fd3-446c-
Reads : 0
EventC{lass : RPC:Completed
ClientProcessID : 124
NTUserName : Administrator
SPID : 51
StartTime : 02/11/2012 14:06:32
CPU : 0
TextData : exec sp_trace setstatus 9,1
Writes : 0
LoginName : KERRIGAN'Administrator
T4 : 02/11/2012 14:06:32

This is a long recipe. There are quite a few things going on here. What we are doing is
simulating what you can do and see with SQL Server Profiler using PowerShell. There
will be cases where this will be useful and cases where SQL Server Profiler is still the
right tool for the job. Regardless, it is good to know how to do it using PowerShell.

To start, it is important to use PowerShell ISE (x86), instead of the usual (x64) version
we have been using in other recipes. The classes we need to use are only supported in
32-bit mode.

We first need to load a few extra libraries, ConnectionInfo and
ConnectionInfoExtended, because we will need to pass these as arguments to the
TraceServer class constructor when we are creating our TraceServer object.

#load ConnectionInfoExtended, this contains TraceFile class

[Reflection.Assembly] : :LoadWithPartialName ("Microsoft.SglServer.
ConnectionInfoExtended") |
Out-Null

#load ConnectionInfo, contains SglConnectionInfo class

[Reflection.Assembly] : :LoadWithPartialName ("Microsoft.SglServer.
ConnectionInfo") |
Out-Null

280

Chapter 5

Next, we need to create a SglConnectionInfo connection object, which needs to be
stored into a ConnectionInfoBase class.

#icreate SglConnectionInfo object,
#specifically required to run the traces
[Microsoft.SglServer.Management .Common.ConnectionInfoBase]

Sconn = New-Object Microsoft.SglServer.Management.Common.
SglConnectionInfo -ArgumentList "KERRIGAN"

Sconn.UselIntegratedSecurity = S$true

There are a couple of Trace-specific classes we need to initialize. The first one is the
TraceServer— which will enable us to start and read the traces.

#create new TraceServer object
#The TraceServer class can start and read traces

Strcserver = New-Object -TypeName Microsoft.SglServer.Management.
Trace.TraceServer

We will need to initialize this as Reader, and we need to pass our connection object and the
path to our Standard Trace Template:

#need to get a handle to a Trace Template
#in this case we are using the Standard template
#that comes with Microsoft

$standardTemplate = "C:\Program Files (x86)\Microsoft SQL Server\110\
Tools\Profiler\Templates\Microsoft SQL Server\1l1l0\Standard.tdf"

$trcserver.InitializeAsReader ($conn, $standardTemplate) |
Out-Null

The goal of our recipe is to both start and read the trace, as well as write new trace events
to a trace file. To achieve this, we need to create a TraceFile object, which allows for writing
the Trace file.

#create new TraceFile object

#and initialize as writer

#The TraceFile class can read and write a Trace File

Strcwriter = New-Object Microsoft.SglServer.Management.Trace.TraceFile

$trcwriter.InitializeAsWriter ($trcserver, Soutputtrace) |
Out-Null

281

Advanced Administration

Once the TraceServer and TraceFile objects are set up, we can start reading the trace.
This will need to happen in a loop:

while ($trcserver.Read())

This start of the while loop will go on as long as there are events being captured by our
TraceServer object.

Inside the loop, we do two things. The first one is we write these events to a trace file, using
our TraceFile object called Strcwriter:

Strcwriter.Write ()

The second thing we do is display the trace. For this particular exercise, we want to capture
the events and be able to display them in a tabular fashion if we need to. To do this, we can
store this event data in a hash, and display this before the end of the loop. This is a little

bit challenging to do if you do not know which columns, and how many columns, are being
captured. This will depend on the trace template you are using. To accommodate different
templates, we'll determine first how many columns are being captured by the TraceServer
object. Note that when we retrieve the columns from the TraceServer, the column index
will start at zero, so we need to subtract one from the total number of columns to avoid any
index out of bounds errors.

Scols = (Strcserver.FieldCount) -1

Based on the columns, we can dynamically build our hash. We can use the GetName method
of the TraceServer object to get the name of the incoming column, and the Getvalue and
GetOrdinal methods of the TraceServer class to extract the value of the column coming in.

$hashstr = "“$hash = “$null; “n “Shash = e{ ‘n"
for(si = 0;$1 -le Scols; Si++)
{

Scolname = Strcserver.GetName ($i)

#add each column to our hash
#we will not capture the binary data
if ($colname -ne "BinaryData")

{

Scolvalue = Strcserver.GetValue (Strcserver.
GetOrdinal (Scolname))

$hashstr += """$($colname) ""=""$(Scolvalue) " “n"

}
}

$hashstr += "}

282

Chapter 5

This is an example of the dynamically constructed hash code:

Shash = $null;

$hash = @{

"EventClass"="Audit Logout"
"TextData"=""
"ApplicationName"="Report Server"
"NTUserName"="sqglservice"

"LoginName"="QUERYWORKS\sqlservice"

"cpuT="0"
"rReads"="36"
"Writes"="0"

"Duration"="7950000"
"clientProcessID"="2032"
"SpPID"="52"
"startTime"="02/11/2012 11:52:55"
"EndTime"="02/11/2012 11:53:03"

L

We then take this dynamically created code to create the actual hash using the
Invoke-Expression cmdlet:

Invoke-Expression shashstr
Once the hash is created, we can display it on the screen:

#display
New-Object PSObject -Property Shash

Sitem =
$item | Format-List

When done with our loop, we need to close both the TraceServer and TraceFile handles:

Strcwriter.Close ()
Strcserver.Close ()

» The Extracting the contents of a trace file recipe

» Check out this article in MSDN called Trace and Replay Objects: A New API for SQL
Server Tracking and Replay (http://msdn.microsoft.com/en-us/library/
ms345134 (v=sgl.90) .aspx).

It is a little bit outdated, but is still very relevant if you want to programmatically work
with traces using .NET languages.

283

http://msdn.microsoft.com/en-us/library/ms345134(v=sql.90).aspx
http://msdn.microsoft.com/en-us/library/ms345134(v=sql.90).aspx

Advanced Administration

Extracting the contents of a trace file

In this recipe, we will extract the contents of a trace file (. trc) using PowerShell.

Getting ready

We will need to use the x86 version of PowerShell and/or PowerShell ISE for this recipe. This
is unfortunate, but some of the classes we need to use are only supported in 32-bit mode.

In this recipe, we will use a previously saved trace (. trc) file. Feel free to substitute this with
a trace file that you have available.

How to do it...

Let's look at how we can extract the contents of a trace file.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE (x86).

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Import additional libraries. These are needed to use our TraceFile and
TraceServer classes. We do this as follows:

#load ConnectionInfoExtended, this contains TraceFile class
[Reflection.Assembly] : :LoadWithPartialName ("Microsoft.SglServer.
ConnectionInfoExtended") |

Out-Null

#load ConnectionInfo, contains SglConnectionInfo class
[Reflection.Assembly] : :LoadWithPartialName ("Microsoft.SglServer.
ConnectionInfo") |

Out-Null

4. Add the following script and run:

#ireplace this with your own filename

$path = "C:\Temp\KERRIGAN trace 2012-02-11_206PM.trc"
Strcreader = New-Object Microsoft.SglServer.Management.Trace.
TraceFile

Strcreader.InitializeAsReader (Spath)

284

Chapter 5

#extract all
$result = @()
if (Strcreader.Read())

{

while (Strcreader.Read())

{
#let's extract only the ones that
#took more than 1000ms

Sduration = Strcreader.GetValue (Strcreader.
GetOrdinal ("Duration"))

if ($duration -ge 1000)
{
Scols = (Strcreader.FieldCount) -1
#we need to dynamically build the hash string
#because we don't know how many columns
#are in the incoming trace file
$hashstr = "“$hash = @{ “n"
for($i = 0;%$i -le Scols; S$Si++)
{
Scolname = Strcreader.GetName ($i)
#don't include binary data
if ($ScolName -ne "BinaryData")

{

Scolvalue = Strcreader.GetValue (Strcreader.
GetOrdinal (Scolname))
Shashstr += "“"$(Scolname) " "=""$(Scolvalue) ™" “n"

}

$hashstr += "}

#create the real hash
Invoke-Expression $hashstr

Sitem = New-Object PSObject -Property S$hash
Sresult += $Sitem

}
#display
$result | Format-List

285

Advanced Administration

Once the script finishes executing, the results on your screen should look like this:

T

Duration : 1111
ApplicationName : 50L Server Profiler - 77c05
Reads : 0
EventClass : RPC:Completed
ClientProcessID : 124
NTUserName : Administrator
SPID : 51
StartTime : 02/11/2012 14:06:32
CPU 0
TextData : exec sp_trace_setstatus 9,1
Writes : 0
LoginName : KERRIGAN'Administrator
EndTime : 02/11/2012 14:06:32
Duration : 2390000
Applicationdame : Report Serwver
Reads : 506
EventClass : Audit Logout
ClientProcessID : 2004
NTUserName : sglservice
SPID : 60
StartTime : 02/11/2012 14:06:37
CPU : 0
TextData 3
Writes : 0
LoginName : QUERYWORKS“sqlserwvice

jme : 0271 012 14:06:39

To extract the contents of a trace file (. trc), we first need to to load a few extra libraries,
ConnectionInfo and ConnectionInfoExtended. These contain the TraceFile class
we need to use in this recipe.

#load ConnectionInfoExtended, this contains TraceFile class
[Reflection.Assembly] : :LoadWithPartialName ("Microsoft.SglServer.
ConnectionInfoExtended") |

Out-Null

#load ConnectionInfo, contains SglConnectionInfo class
[Reflection.Assembly] : :LoadWithPartialName ("Microsoft.SglServer.
ConnectionInfo") |

Out-Null

286

Chapter 5
We then need to create a TraceFile object, initialized as a reader:

#ireplace this with your own filename
Spath = "C:\Temp\KERRIGAN trace 2012-02-11 206PM.trc"

Strcreader = New-Object Microsoft.SglServer.Management.Trace.TraceFile
Strcreader.InitializeAsReader ($Spath)

To read all the contents, we need to put the reader in a while loop, and keep on iterating while
there are events in the trace file to be read:

while (Strcreader.Read())

In our recipe, we only cared about any events that had a duration of over 1000 ms.

#let's extract only the ones that took more than 1000ms
Sduration = $trcreader.GetValue ($Strcreader.GetOrdinal ("Duration"))

The GetOrdinal method of the TraceFile class allows you to get the nth column in which
Duration is. Using this, we can pass it to the Getvalue method of the TraceFile class to
extract the value in that column position.

Also note that in our recipe, we extract all the columns except the BinaryData in the
trace file. We do this by looping through all the columns, and putting them into a hash
we dynamically build:

#we need to dynamically build the hash string
#tbecause we don't know how many columns are in the
#incoming trace file
$hashstr = "“$hash = @{ ‘“n"
for(si = 0;$1i -le S$cols; Si++)
{
Scolname = S$trcreader.GetName ($1)
#don't include binary data
if ($colName -ne "BinaryData")
{
Scolvalue = S$trcreader.GetValue ($Strcreader.GetOrdinal ($Scolname))
Shashstr += "“"$(Scolname) ""=""$(Scolvalue) ™" “n"
}
}

$hashstr += "}

287

Advanced Administration

This is an example of the dynamically constructed hash code:

Shash = $null;

$hash = @{

"EventClass"="Audit Logout"
"TextData"=""
"ApplicationName"="Report Server"
"NTUserName"="sqlservice"

"LoginName''="QUERYWORKS\sqlservice"

"cPU":”O“
"Reads"="36"
"Writes"="0"

"Duration"="7950000"
"ClientProcessID"="2032"
"spID"="52"
"startTime"="02/11/2012 11:52:55"
"EndTime"="02/11/2012 11:53:03"

1

Once the hash string is built, we can use the Invoke-Expression cmdlet to create the
real hash.

#icreate the real hash
Invoke-Expression Shashstr

We then store this to an array, which we display after the loop is finished:

Sitem = New-Object PSObject -Property shash
Sresult += Sitem

}
#display
$result | Format-List

An alternative to dynamically building the hash is explicitly identifying which columns you
want included in the hash. This is doable only if you are familiar with the template used
when capturing the trace file. The syntax you would use would be similar to this:

$hash = @f

"EventClass"=Strcreader.GetValue (Strcreader.GetOrdinal ("EventClass"))
"TextData"=$trcreader.GetValue (Strcreader.GShash = @f
"EventClass"=Strcreader.GetValue (Strcreader.GetOrdinal ("EventClass"))
"TextData"=Strcreader.GetValue (Strcreader.GetOrdinal ("TextData"))
"Duration"=Strcreader.GetValue (Strcreader.GetOrdinal ("Duration"))

}

Sitem = New-Object PSObject -Property S$hash

Sresult += Sitem

288

Chapter 5

See also

» The Running and saving a profiler trace event recipe

Creating a database master key

In this recipe, we will create a database master key.

Getting ready

We will create a database master key for the master database in this recipe. You can substitute
a different database for this exercise if you wish.

The T-SQL equivalent of what we are trying to accomplish is:

USE master

GO
CREATE MASTER KEY ENCRYPTION
BY PASSWORD = 'P@ssword'

How to do it...

Let's list the steps required to complete the task:
1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQL.PS module, and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

SVerbosePreference = "Continue"
Smasterdb = $server.Databases["master"]

289

Advanced Administration

if (Smasterdb.MasterKey -eq S$null)

{

Smasterkey = New-Object Microsoft.SglServer.Management.Smo.
MasterKey -ArgumentList $masterdb

Smasterkey.Create ("P@ssword")

Write-Verbose "Master Key Created : $($masterkey.CreateDate)"

}

SVerbosePreference = "SilentlyContinue"

If successful, in your output, you should see a one-line message containing the success
message, and the date on which the master key was created.

A database master key is required if you want to do any database-level encryption. It is used
to encrypt keys and certificates in a specific database.

Creating a database master key is straightforward. You need to create an SMO
MasterKey object:

Smasterkey = New-Object Microsoft.SglServer.Management.Smo.MasterKey
-ArgumentList S$masterdb

Smasterkey.Create ("P@ssword")

There are a couple of overloads to the Create method of the MasterKey class. In our
recipe, we chose to provide a single password. The alternative is to pass both a decryption
and encryption password.

If the database master key already exists, you may not necessarily be able to drop it right away.
If there are encryption objects already created that are being protected by the database master
key, you must drop those encryption objects first before you can drop the database master key.

Once there are no more dependent objects, you can use the following PowerShell code to drop

the master key:

#drop master key
$masterkey.Drop ()

See also

» The Creating a certificate recipe
» You can learn more about the MasterKey class from MSDN:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
management .smo.masterkey (v=sqgl.110) .aspx

290

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.masterkey(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.masterkey(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.masterkey(v=sql.110).aspx

Chapter 5

Creating a certificate

This recipe demonstrates how you can create a certificate using PowerShell and SMO.

Getting ready

In this recipe, we will create a certificate called Test Certificate, protected by the
database master key. You will need to make sure that the database master key has been
created first for the database.

The T-SQL equivalent of what we are trying to accomplish is:

CREATE CERTIFICATE [Test Certificate]

WITH SUBJECT = N'This is a test certificate.',
START DATE = N'02/10/2012',

EXPIRY DATE = N'01/01/2015'

How to do it...

Let's list the steps required to complete the task.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

ScertificateName = "Test Certificate"
Smasterdb = S$server.Databases["master"]

if (Smasterdb.Certificates[ScertificateName])

{

Smasterdb.Certificates[$certificateName] .Drop ()

}

Scertificate = New-Object -TypeName Microsoft.SglServer.
Management .Smo.Certificate -ArgumentList $masterdb,
ScertificateName

291

Advanced Administration

#set properties

Scertificate.StartDate = "February 10, 2012"
Scertificate.Subject = "This is a test certificate."
Scertificate.ExpirationDate = "January 01, 2015"

#icreate certificate

#you can optionally provide a password, but this
#icertificate we created is protected by the master key
Scertificate.Create()

#display all properties
Scertificate | Select *

When the certificate is created and the script is done executing, the resulting
screen will look similar to the following screenshot:

4
Parent : [master]
ActiveForServiceBrokerDialog : True
ExpirationDate : 17172015 12:00:00 AM
ID : 268
Issuer : This is a test certificate.
LastBackupDate » 1/1/0001 12:00:00 AM
Owner : dbo
PrivateKeyEncryptionType : MasterKey
Serial : 7c Tf 95 9f a3 2b Ge ad 49 4d 1f
sid : {1, 6, 0, O...7}
StartDate » 2/10/2012 12:00:00 AM
Subject : This 15 a test certificate.
Thumbprint +» {42, 191, 157, 163...%}
Events : Microsoft.5glServer.Management. Sm
Name : Test Certificate
Urn : Server [BName='KERRIGAN'] /Databas
Properties : {Name=ActiveForServiceBrokerDialo
Name=ExpirationDate,/Type=System. D
Name=Issuer /Type=System.String/wWr
UserData

4. To confirm this via T-SQL, we can use the sys.certificates DMV to list all
certificates. Open SQL Server Management Studio, and execute the following

T-SQL statement:

SELECT *

FROM sys.certificates

WHERE [name] = 'Test Certificate'

To create a certificate, you need to first create an SMO Certificate object:

292

Chapter 5

Scertificate = New-Object -TypeName Microsoft.SglServer.Management.
Smo.Certificate -ArgumentList $masterdb, S$ScertificateName

There are a few properties we can set for an SMO Certificate object. In this recipe, we set
the StartDate, Subject, and ExpirationDate values:

Scertificate.StartDate = "February 10, 2012"
Scertificate.Subject = "This is a test certificate."
Scertificate.ExpirationDate = "January 01, 2015"

If you want to create a certificate that is protected by the database master key, you can
just invoke the Create method of the Certificate class. You can optionally provide
a password:

Scertificate.Create()

There's more...

A certificate is essentially a digitally signed document that binds a public key with an identity,
and is used to prove authenticity of ownership. This helps prevent malicious impersonations,
in other words, somebody or something pretending to be someone or something they are not.

Learn more about certificates from MSDN:

http://msdn.microsoft.com/en-us/library/ms189586 (v=sgl.110) .aspx

See also

» The Creating a database master key recipe

Creating symmetric and asymmetric keys

In this recipe, we will create symmetric and asymmetric keys.

Getting ready

In this recipe, we will use the TestDB database. If you don't already have this database,
log in the SQL Server Management Studio and execute the following T-SQL code:

IF DB_ID('TestDB') IS NULL
CREATE DATABASE TestDB
GO

293

http://msdn.microsoft.com/en-us/library/ms189586(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms189586(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms189586(v=sql.110).aspx

Advanced Administration

We will also need a user called eric in our TestDB database. This user will map to the
SQL login eric. Feel free to create this user using the Creating a database user recipe.
Alternatively, execute the following T-SQL code from SQL Server Management Studio:

Use TestDB

GO

CREATE USER [eric]
FOR LOGIN [eric]

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module, and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

#database handle
Sdatabasename = "TestDB"
Sdatabase = $server.Databases[$databasename]

f==
Create Database Master Key
f==
#this is equivalent to:

<#

USE TestDB

GO

CREATE MASTER KEY ENCRYPTION

BY PASSWORD = 'P@ssword'

#>

#icreate (user) database master key
#if this doesn't exist yet

Sdbmk = New-Object Microsoft.SglServer.Management.Smo.MasterKey
-ArgumentList $database

Sdbmk . Create ("P@ssword")

Chapter 5

#this is equivalent to:

<#

USE TestDB

GO

CREATE ASYMMETRIC KEY [EncryptionAsymmetricKey]

AUTHORIZATION [eric]

WITH ALGORITHM = RSA 2048

#>

Sasymk = New-Object Microsoft.SglServer.Management.Smo.
AsymmetricKey -ArgumentList S$database, "EncryptionAsymmetricKey"

#ireplace this with a known database user in the
#database you are using for this recipe
Sasymk.Owner = "eric"

Sasymk.Create ([Microsoft.SglServer.Management . Smo.AsymmetricKeyEnc
ryptionAlgorithm] : :Rsa2048)

H oo m oo m— o oo——o—o———o——o————————o——co——co————cc——co—===
Create Symmetric Key

H oo m oo m— o oo——o—o———o——o————————o——co——co————cc——co—===
#this is equivalent to

<#

CREATE CERTIFICATE [Encryption]

WITH SUBJECT = N'This is a test certificate.’',
START DATE = N'02/10/2012",

EXPIRY DATE = N'01/01/2015"

#>

#icreate certificate first to be used for Symmetric Key

Scert = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Certificate -ArgumentList S$database, "Encryption"

Scert.StartDate = "February 10, 2012"
Scert.Subject = "This is a test certificate."
Scert.ExpirationDate = "January 01, 2015"

Scert.Create ()

#icreate a symmetric key based on certificate
#this is equivalent to

295

Advanced Administration

<#

CREATE SYMMETRIC KEY [EncryptionSymmetricKey]

WITH ALGORITHM = TRIPLE_DES

ENCRYPTION BY CERTIFICATE [Encryption]

#>

$symk = New-Object Microsoft.SglServer.Management.Smo.
SymmetricKey -ArgumentlList $database, "EncryptionSymmetricKey"
$symkenc = New-Object Microsoft.SglServer.Management.Smo.
SymmetricKeyEncryption ([Microsoft.SglServer.Management.Smo.
KeyEncryptionTypel : :Certificate, "Encryption")

$symk.Create ($symkenc, [Microsoft.SglServer.Management.Smo.
SymmetricKeyEncryptionAlgorithm] : : TripleDes)

#list each object we created
Sdbmk . Parent

Scert .Name

Sasymk

$symk

The resulting screen should look similar to the following:

CreateDate : 2/10/2012 2:46:34 PM
DatelLastModified : 2/10/2012 2:46:34 PM
IsEncryptedByServer : True

IsOpen : False

Parent : [TestDB]

urn : Server [@Name='KERRIGAN']/Databa
Properties : {Name=CreateDate/Type=System.Dat

Name=DatelLastModified/Type=Syst
Name=IsEhcryptedByServer,/Type=S
Name=IsOpen/Type=System.Boolean
UserData :
State 1 Existing

Name : Encryption

Name : EncryptionAsymmetricKey

Name : Encrxgt'ionSxmmet;'ichy I

Alternatively, you can use the following T-SQL statement to confirm the existence of the
database master key, certificate, symmetric, and asymmetric keys we created in this recipe:

SELECT 'DB Master Key' ,
is _master key encrypted by server

FROM sys.databases

WHERE [name] = 'TestDB'
SELECT 'Certificate' , *
FROM sys.certificates

296

Chapter 5

WHERE [name] = 'Encryption'

SELECT 'Asymmetric Key' , *

FROM sys.asymmetric_ keys

WHERE [name] = 'EncryptionAsymmetricKey'
SELECT 'Symmetric Key' , *

FROM sys.symmetric keys

WHERE [name] = 'EncryptionSymmetricKey'

Before we can create a symmetric or asymmetric key, we have to first create a database
master key. MSDN defines a database master key as follows:

a symmetric key used to protect the private keys of certificates and asymmetric
keys that are present in the database.

Consider the following code for creating the master key:

Sdbmk = New-Object Microsoft.SglServer.Management.Smo.MasterKey
-ArgumentList S$database
Sdbmk . Create ("P@ssword")

Once the database master key is in place, we can create our symmetric and asymmetric keys.

To create the asymmetric key, you need to create an SMO asymmetric key instance, and assign
an owner and encryption algorithm. The available AsymmetricKeyEncryptionAlgorithm
values are CryptographicProviderDefined, Rsa512, Rsal024, and Rsa2048.

Sasymk = New-Object Microsoft.SglServer.Management.Smo.AsymmetricKey
-ArgumentList S$database, "EncryptionAsymmetricKey"

#ireplace this with a known user in your instance

Sasymk.Owner = "EncryptionUser"

Sasymk.Create ([Microsoft.SglServer.Management . Smo.
AsymmetricKeyEncryptionAlgorithm] : :Rsa2048)

To create a symmetric key, we must first create a certificate:

#icreate certificate first to be used for Symmetric Key
Scert = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Certificate -ArgumentList $database, "Encryption"

Scert.StartDate = "February 10, 2012"
Scert.Subject = "This is a test certificate."
Scert.ExpirationDate = "January 01, 2015"

Scert.Create ()

297

Advanced Administration

To create a symmetric key based on the certificate, we should first instantiate an SMO
SymmetricKey object:

$symk = New-Object Microsoft.SglServer.Management.Smo.SymmetricKey
-ArgumentList $database, "EncryptionSymmetricKey"

We then need to specify the SymmetricKey encryption type. The available values are
SymmetricKey, Certificate, Password, AsymmetricKey, and Provider.

$Ssymkenc = New-Object Microsoft.SglServer.Management.Smo.
SymmetricKeyEncryption ([Microsoft.SglServer.Management.Smo.
KeyEncryptionTypel] : :Certificate, "Encryption")

When we create the SymmetricKey, we must also specify which algorithm to use. The
available SymmetricKeyAlgorithm values are CryptographicProviderDefined
RC2, RC4, Des, TripleDes, DesX, Aesl128, Aes192, Aes256, and TripleDes3Key:

$symk.Create ($symkenc, [Microsoft.SglServer.Management.Smo.
SymmetricKeyEncryptionAlgorithm] : : TripleDes)

Symmetric and asymmetric keys can be used to set up cell-level encryption in SQL Server.
The typical steps to setting up cell-level encryption are:

» Create master key

» Create certificate or asymmetric key

» Create symmetric key protected by certificate or asymmetric key
» Open symmetric key—encrypt or decrypt—close symmetric key

You can learn more about symmetric and asymmetric keys from this MSDN article:
http://support.microsoft.com/kb/246071

Another MSDN article that walks you through how you can encrypt a column of data using T-SQL
ishttp://msdn.microsoft.com/en-us/library/ms179331 (v=sgl.110) .aspx.

» The Creating a database master key recipe
» The Creating a certificate recipe

298

http://support.microsoft.com/kb/246071
http://support.microsoft.com/kb/246071
http://msdn.microsoft.com/en-us/library/ms179331(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms179331(v=sql.110).aspx

Chapter 5

Setting up Transparent Data Encryption

(TDE)

This recipe shows how you can set up Transparent Data Encryption using PowerShell and SMO.

Getting ready

In this recipe, we will enable Transparent Data Encryption (TDE) on the TestDB database.
If you don't already have this test database, log in the SQL Server Management Studio and
execute the following T-SQL code:

IF DB_ID('TestDB') IS NULL
CREATE DATABASE TestDB
GO

You must already have a database master key for this TestDB database. If not, create it
using the Creating a database master key recipe.

How to do it...

These are the steps to set up Transparent Data Encryption (TDE) programmatically:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run:

Sdatabasename = "TestDB"

Sdatabase = S$server.Databases[$Sdatabasename]

#if not yet created, create or obtain a certificate
#iprotected by the master key
#this is equivalent to

299

Advanced Administration

<#

USE master

GO

CREATE CERTIFICATE [Encryption]

WITH SUBJECT = N'This is a test certificate.’',
START DATE = N'02/10/2012",

EXPIRY DATE = N'01/01/2015"

#>
ScertificateName = "Test Certificate™"
Smasterdb = $server.Databases["master"]

if (Smasterdb.Certificates[ScertificateName])

{

Smasterdb.Certificates[ScertificateName] .Drop ()

}

Scertificate = New-Object -TypeName Microsoft.SglServer.
Management .Smo.Certificate -ArgumentList $masterdb,
ScertificateName

#icreate certificate protected by the master key

Scertificate.StartDate = "February 10, 2012"
Scertificate.Subject = "This is a test certificate."
Scertificate.ExpirationDate = "January 01, 2015"

#you can optionally provide a password, but this
#icertificate we created is protected by the master key
Scertificate.Create()

#icreate a database encryption key

#this is equivalent to

<#

CREATE DATABASE ENCRYPTION KEY

WITH ALGORITHM = AES 256

ENCRYPTION BY SERVER CERTIFICATE [Test Certificatel]

#>

$dbencryption = New-Object Microsoft.SglServer.Management.Smo.
DatabaseEncryptionKey

$dbencryption.Parent = S$Sdatabase
Sdbencryption.EncryptionAlgorithm = [Microsoft.SglServer.
Management . Smo.DatabaseEncryptionAlgorithm] : :Aes256

300

Chapter 5

Sdbencryption.EncryptionType = [Microsoft.SglServer.Management.
Smo.DatabaseEncryptionType] : :ServerCertificate

#associate certificate name
Sdbencryption.EncryptorName = ScertificateName
Sdbencryption.Create ()

#enable TDE

#this is equivalent to

<#

ALTER DATABASE [TestDB]

SET ENCRYPTION ON

#>

$database.EncryptionEnabled = Strue
Sdatabase.Alter ()
Sdatabase.Refresh ()

#display TDE setting
$database.EncryptionEnabled

The resulting screen should look similar to the following:

PS SQLSERVER:\>

#display TDE setting
$database.EncryptionEnabled
True

The final line should say True, if Transparent Data Encryption was successfully turned
on for TestDB.

Alternatively you can use the following T-SQL statement to confirm:

SELECT db.name ,
db.is_ encrypted ,
dm.encryption state ,
dm.percent complete ,
dm.key algorithm ,
dm.key length
FROM sys.databases db
LEFT OUTER JOIN sys.dm database encryption keys dm
ON db.database id = dm.database id

301

Advanced Administration

This should give you a result similar to the following:

] Results | _'_1 Messagesl
name | is_encrypted | encryption_state | percent_complete | key_algarthm | key_length
1 tempdb 0 3 1] AES 256
2 TestDE 1 3 1] AES 256
3 SSISDB 0 NULL MNULL MULL MNULL
4 model 0 NULL MNULL MULL MNULL
5 AdventureWorks2008R2 0 NULL MNULL MULL NULL
6 Report Server 0 NULL MNULL MULL NULL
T LL N

The encryption_state = 3 means encryption of that database has already completed.
Notice also that tempdb is also encrypted. By default, if any user databases are
encrypted, tempdb also automatically gets encrypted.

There are a few preparatory steps required to enable Transparent Data Encryption (TDE).

You first need to create a master key. You will then need to create a certificate stored in the
master database, and protected by the database master key for the master database.

Scertificate = New-Object -TypeName Microsoft.SglServer.Management.
Smo.Certificate -ArgumentList S$masterdb, ScertificateName

#icreate certificate protected by the master key

Scertificate.StartDate = "February 10, 2012"
Scertificate.Subject = "This is a test certificate."
Scertificate.ExpirationDate = "January 01, 2015"

#you can optionally provide a password, but this

#icertificate we created is protected by the master key
Scertificate.Create()

The next step is to create a database encryption key protected by the certificate. This key is
needed for transparently encrypting a user database.

#icreate a database encryption key

Sdbencryption = New-Object Microsoft.SglServer.Management.Smo.
DatabaseEncryptionKey

302

Chapter 5

We need to associate this with the database for which we want to turn on TDE.
Sdbencryption.Parent = S$database

When creating a database encryption key, we also need to specify the encryption algorithm.
The available encryptions are Aes128, Aes192, Aes256, and TripleDes.

Sdbencryption.EncryptionAlgorithm = [Microsoft.SglServer.Management.
Smo.DatabaseEncryptionAlgorithm] : :Aes256

We also need to associate this key with the certificate we previously created. The possible
DatabaseEncryptionType values are ServerCertificate and ServerAsymmetricKey

Sdbencryption.EncryptionType = [Microsoft.SglServer.Management.Smo.
DatabaseEncryptionTypel] : : ServerCertificate

#associate certificate name
$Sdbencryption.EncryptorName = S$ScertificateName

You are now ready to create the database encryption key:
Sdbencryption.Create ()

At this point, the preparatory steps are complete. We can now turn on TDE, and alter our
target database.

#enable TDE
$database.EncryptionEnabled = S$true
Sdatabase.Alter ()
Sdatabase.Refresh ()

Transparent Data Encryption (TDE) is introduced in SQL Server 2008 as a solution for
database-level encryption. If TDE is turned on, data in the data and log files are encrypted.
This will also automatically encrypt tempdb.

303

Advanced Administration

>

>

304

The Creating a certificate recipe

The Altering database properties recipe in Chapter 2, SQL Server and PowerShell
Basic Tasks

Read more about Transparent Data Encryption from MSDN:
http://msdn.microsoft.com/en-us/library/bb934049 (v=sgl.110) .
aspx

Check out encryption_state values of sys.dm_database_encryption_keys from MSDN:
http://msdn.microsoft.com/en-us/library/bb677274.aspx

http://msdn.microsoft.com/en-us/library/bb934049(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/bb934049(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/bb677274.aspx
http://msdn.microsoft.com/en-us/library/bb677274.aspx

Backup and Restore

In this chapter, we will cover:

» Changing database recovery model

» Listing backup history

» Creating a backup device

» Listing backup header and file list information
» Creating a full backup

» Creating a backup on mirrored media sets

» Creating a differential backup

» Creating a transaction log backup

» Creating a filegroup backup

» Restoring a database to a point in time

» Performing an online piecemeal restore

Introduction

Knowing how to back up and restore a database is one of the most fundamental skills you
need to have when managing your database environment.

There are different ways to do backup and restore. It can be done through SQL Server
Management Studio, by using stored procedures, or through SSIS. And now, these tasks
can be done with PowerShell. The key is to determine which tool is best suited for the
particular task.

Backup and Restore

Doing the backups and restores using PowerShell has its own advantages, including being
able to automate backups across multiple servers, being able to retrieve, consolidate, and
filter all backup histories if needed. It is even easier to do these tasks in SQL Server 2012
because of additional cmdlets for backup and restore. It also gives you access to the full
power of SMO should you need to add additional parameters.

Changing database recovery model

In this recipe, we will explore how to change SQL Server recovery model using PowerShell.

Getting ready

We will use AdventureWorks2008R2 in this exercise, and change the recovery model from
Full to Simple. Feel free to substitute this with a database of your choice.

Check what SQL Server recovery model your instance is set to, using SSMS. Open your Object
Explorer and right-click on the database you chose and click on Properties | Options:

. Database Properties - AdventureWorks2008R2 - |EI|&
Selu:ta ; % Seript + [Help

2 General
2 Files

Collation: I Latin1_General_100_CS_AS

1% Filegroups
A "‘/ Recovery modsl: \ﬂ I Full

Eﬁ Change Tracking

LefLefle] Led

% Pemissions Compatibility level: ISOL Server 2012 (110)
% Bdended Properties Containment type: INDne

“A Mirrori
e (Other options:

12 Transaction Log Shipping

e

Auta Create Statistics True
Auta Shrink False
Auto Update Statistics True

Auto Update Statistics Asynchronoushy

English

If your database is set to either Simple or Bulk-logged, change this to Full and click on OK.
Since we will be using AdventureWorks2008R2 in later exercises, we need to change this
recovery model back to Full after this exercise.

306

Chapter 6

How to do it...

5.

6.

7.

Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

Import the SQL.PS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

Add the following script and run:

SinstanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Sdatabasename = "AdventureWorks2008R2"
Sdatabase = S$server.Databases[$databasename]

#possible values for RecoveryModel are

#Full, Simple and BulkLogged
$database.DatabaseOptions.RecoveryModel = [Microsoft.SglServer.
Management . Smo.RecoveryModel] : : Simple

Sdatabase.Alter ()

Sdatabase.Refresh ()

#list Recovery Model again
$database.DatabaseOptions.RecoveryModel

#remember to change the recovery model back
#to full for the next recipes

To change a database's RecoveryModel property, get a handle to that database first:

Sdatabasename = "AdventureWorks2008R2"
Sdatabase = S$server.Databases[$Sdatabasename]

Once you have the handle, use the DatabaseOptions property of the database object to
set the RecoveryModel property to Simple:

#possible values for RecoveryModel are

#Full, Simple and BulkLogged
$database.DatabaseOptions.RecoveryModel = [Microsoft.SglServer.
Management . Smo.RecoveryModel] : : Simple

Sdatabase.Alter ()

Sdatabase.Refresh ()

307

Backup and Restore

There's more...

RecoveryModel is a database property that specifies what backup and restore operations
are permitted. There are three possible values for RecoveryModel: Full, BulkLogged,
and Simple.

Full and BulkLogged recovery models allow the use of logfiles for backup and restore
purposes. The Full recovery model heavily uses the transaction logfiles, and allows for
point-in-time recovery.

The BulkLogged recovery model minimally logs the bulk events. If there are no bulk events
in the system, then point-in-time recovery is possible. If there are bulk events, however, point-
in-time recoverability will be affected, and it is possible not to be able to recover from your
logfiles at all. See Paul Randal's blog post on A SQL Server DBA myth a day: (28/30) BULK_
LOGGED recovery model:

http://www.sglskills.com/BLOGS/PAUL/post/A-SQL-Server-DBA-myth-a-day-
(2830) -BULK_LOGGED-recovery-model.aspx

The simple recovery model does not support transaction log backups and restores at
all. This means that there is no point-in-time recovery possible, and the window for data
loss could be large. Simple recovery model, therefore, is not a recommended setting for
production servers; it can be a setting used for development and sandbox servers, or any
instance where data loss would not be critical.

The RecoveryModel you choose in your environment will typically be determined by the
company's Recovery Point Objective (RPO) and Recovery Time Objective (RTO), although in
most cases the recommended setting would be Full recovery model.

Read more about RecoveryModel from MSDN:

http://msdn.microsoft.com/en-us/library/ms189275 (v=sgql.110) .aspx

See also

» The Altering database properties recipe in Chapter 2, SQL Server and PowerShell
Basic Tasks

308

http://www.sqlskills.com/BLOGS/PAUL/post/A-SQL-Server-DBA-myth-a-day-(2830)-BULK_LOGGED-recovery-model.aspx
http://www.sqlskills.com/BLOGS/PAUL/post/A-SQL-Server-DBA-myth-a-day-(2830)-BULK_LOGGED-recovery-model.aspx
http://www.sqlskills.com/BLOGS/PAUL/post/A-SQL-Server-DBA-myth-a-day-(2830)-BULK_LOGGED-recovery-model.aspx
http://msdn.microsoft.com/en-us/library/ms189275(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms189275(v=sql.110).aspx

Chapter 6

Listing backup history

In this recipe, we will list the backup history for a SQL Server instance.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SglServer.Management.
Smo.Server -ArgumentList $instanceName

#display date of last backup

$server.Databases |

Select Name, RecoveryModel, LastBackupDate,
LastDifferentialBackupDate, LastLogBackupDate |
Format-Table -AutoSize

Your result should look similar to the following screenshot:

Name RecoveryModel LastBackupDate LastDifferentialBackupDate LastLogBackupDate
Adventureworks2008R2 Full 2/26/2012 7:14:16 PM 2/26/2012 7:14:29 PM 2/26/2012 7:15:00 PM
master Simple 1/1/0001 12:00:00 AM 1/1/0001 12:00:00 AM 1/1/0001 12:00:00 AM
model Full 1/1/0001 12:00:00 AM 1/1/0001 12:00:00 AM 1/1/0001 12:00:00 AM
msdb Simple 1/1/0001 12:00:00 AM 1/1/0001 12:00:00 AM 1/1/0001 12:00:00 AM
ReportServer Full 1/1/0001 12:00:00 AM 1/1/0001 12:00:00 AM 1/1/0001 12:00:00 AM
ReportServerTempDB Simple 1/1/0001 12:00:00 AM 1/1/0001 12:00:00 AM 1/1/0001 12:00:00 AM
SampleEncryption Full 1/1/0001 12:00:00 AaM 1/1/0001 12:00:00 AM 1/1/0001 12:00:00 AM
StudentDBE Full 2/26/2012 5:48:30 PM 1/1/0001 12:00:00 AM 1/1/0001 12:00:00 AM
tempdb Simple 1/1/0001 12:00:00 AM 1/1/0001 12:00:00 AM 1/1/0001 12:00:00 AM
TestDB Full 2/26/2012 12:32:44 PM 2/26/2012 8:49:34 aM 2/26/20 8: AM
Lo o SR i, v, Ty N T

ot e E o

Note that when you see a date of 1/1/0001 12:00:00 AM, then it means no backup
has ever been taken for that database.

Listing the backup history is a simple task, using a little bit of PowerShell and SMO. After you
get a database handle, you can display the last backup dates onto the screen.

#display days ago since last backup
$server.Databases |

309

Backup and Restore

Select Name, RecoveryModel, LastBackupDate,
LastDifferentialBackupDate, LastLogBackupDate |
Format-Table -AutoSize

Alternatively, you can capture this in a file, or a table, whichever your requirements specify.

See also

» The Listing SQL Server jobs recipe in Chapter 3, Basic Administration

Creating a backup device

This recipe shows how you can create a backup device using PowerShell.

Getting ready

We are going to create a backup device in this recipe. The equivalent T-SQL of what we are
trying to accomplish is:

EXEC master.dbo.sp addumpdevice @devtype = N'disk',
@logicalname = N'Full Backups',
@physicalname = N'C:\Backup\backupfile.bak'

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.
Smo.Server -ArgumentList $instanceName

#this file will be created by PowerShell/SMO
Sbackupfilename = "Full Backups"
$backupfile = "C:\Backup\backupfile.bak"

Sbackupdevice = New-Object Microsoft.SglServer.Management.Smo.
BackupDevice ($server, $backupfilename)

Chapter 6

#BackupDeviceType values are:

#CDRom, Disk, FloppyA, FloppyB, Tape, Pipe, Unknown
Sbackupdevice.BackupDeviceType = [Microsoft.SglServer.Management.
Smo .BackupDeviceTypel] : :Disk

Sbackupdevice.Physicallocation = $backupfile
Sbackupdevice.Create ()

#list backup devices
$server.BackupDevices

4. Confirm by using SQL Server Management Studio. Log in to your instance and expand
Backup Devices. You should see the new backup device you created in PowerShell.

= Lﬂ KERRIGAM (SQL Server 11.0, 1440 - KERRIGAN\Administrator)
[Databaszes
1 Security
= 1 Server Objects
= [Backup Devices
= Full Backups
[Endpaints

A backup device is a layer of abstraction that allows you to reference a backup medium—be it a
file, a network share, or a tape—using a logical name instead of specifying the full physical path.

To create a backup device using PowerShell and SMO, you will need to first create a handle
to an SMO BackupDevice object:

Sbackupdevice = New-Object Microsoft.SglServer.Management.Smo.
BackupDevice ($server, $Sbackupfilename)

You will also need to specify BackupDeviceType, and the physical location of the media.
BackupDeviceType can be one of CDRom, Disk, Floppy?, FloppyB, Tape, Pipe, and
Unknown. This is illustrated in the following code:

SinstanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Sbackupdevice.BackupDeviceType = [Microsoft.SglServer.Management.Smo.
BackupDeviceTypel : :Disk

Sbackupdevice.Physicallocation = $backupfile

Sbackupdevice.Create ()

Backup and Restore

See also

» The Listing backup header information and file list information recipe

» Read up on backup devices:

http://msdn.microsoft.com/en-us/library/ms179313 (v=sgl.110) .
aspx

Listing backup header and file list

information

In this recipe, we will look at listing backup header information from a backup file.

Getting ready

For this task, we will look at listing an existing backup's header information.

If you do not have any backups in your system yet, you can do any of
L this chapter's backup recipes prior to performing this recipe.

How to do it...

To list the header information, follow these steps:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

$instanceName = "KERRIGAN"

Sserver = New-Object -TypeName Microsoft.SglServer.Management.
Smo.Server -ArgumentList $instanceName

$smoRestore = New-Object Microsoft.SglServer.Management.Smo.
Restore

#ireplace this with your backup file
S$backupfile = "AdventureWorks2008R2 Full 20120205231407.bak"

http://msdn.microsoft.com/en-us/library/ms179313(v=sql.110).aspx

Chapter 6

#change this to where your backup directory is
#in our case we're using default backup directory

Sbackupfilepath = Join-Path $server.Settings.BackupDirectory
Sbackupfile

$smoRestore.Devices.AddDevice ($Sbackupfilepath, [Microsoft.

SglServer.Management .Smo.DeviceType] : :File)
$smoRestore.ReadBackupHeader ($server)
SsmoRestore.ReadFileList (Sserver)

The result you are going to get will be similar to the following screenshot:

BackupName : AdventureWorks2008R2 Full Backup

BackupDescription : Full Backup of at 20120205231407

BackupType 1

ExpirationDate :

Compressed : 0

Position 3 d

DeviceType : 2

UserName : KERRIGAN‘Administrator

ServerName : KERRIGAN

DatabaseName : AdventurewWorks2008R2

DatabasevVersion : 700

DatabaseCreationDate 1172772011 11:14:08 AM

BackupSize : 216196096

FirstLSN : 903000000195200037

LastLSN : 903000000196900001

CheckpointL5N : 903000000195200037

DatabaseBackupLSHN : 903000000192400037

BackupStartDate : 2/5/2012 11:14:07 PM

BackupFinishDate : 2/5/2012 11:14:18 PM

Sortorder : 0

CodePage : 0

UnicodelLocaleId : 1033

UnicodeComparisonStyle : 196608

CompatibilityLevel : 110

SoftwareVendorId : 4608

softwarevVersionMajor 11

SoftwareVersionMinor : D

SoftwareVersionBuild : 1440

MachineName : KERRIGAN

Flags : 512

BindingID : fB8737061-8981-4bd7-a0d5-d15451dbeb? f

RecoveryForkID : Bb2265b9-4e69-4114-9312-dabb4bldbhdee

Collation : Latinl_General_100_C5_AS

Fami 1yGUID : 2bT075a6-1el5-4d85-9841-943959d3b0b3
3 1

Notice that you can see the BackupName, BackupType, ServerName, BackupSize,
BackupStartDate, BackupFinishDate, and different LSN values.

Backup and Restore

4. To display the file list information, add the following script and run:

SsmoRestore.ReadFileList ($server)

The result you are going to get will be similar to the following screenshot:

LogicalName
PhysicalName

TDEThumbprint

LogicalName
PhysicalName
Type
FileGroupName
Size

MaxSize
FileId
Createl5SN
DropL5SN
UniqueId
ReadOnTyLSN
ReadWriteLsN
BackupSizeInBytes
SourceBlockSize

: AdventureWorks2008R2_Data
: C:\Program Files‘\Microsoft SQL Serwver‘MSSQL11

Type D

FileGroupName PRIMARY

Size 226230272

MaxSize 35184372080640

FileId 1

CreateL5N 0

DropL5SN 0

UniqueId 7980eb62-3b40-49f9-9693-e66d5d24bfh2
ReadOnTyLSN 0

ReadWriteLsSN 0

BackupSizelInBytes 215810048

SourceBlockSize 512

FileGroupId 1

LogGroupGUID

DifferentialBaselLSN : 903000000192400037
DifferentialBaseGUID : 35deaad9-328e-42fd-889b-fefl16ab19137
IsReadonly False

IsPresent : True

: AdventureWorks2008R2_Log
: C:\Program Files‘\Microsoft SQL Serwver‘M55QL1

L

64946176

35184372080640

2

0

0
27835058-f0ee-4669-9180-51f77d8ca58b

Notice that you can see properties such as LogicalName, PhysicalName,
FileGroupName, and Size of both the data and logfiles associated with

this backup file.

You will often want to find out more information about the contents of your backup files. The
backup header and the file list of the backup files allow you to retrieve additional information
about the contents of a backup file or backup device. Starting with SQL Server 2008, one
must have the CREATE DATABASE permission before the header information can be listed.

314

Chapter 6

To start, we must first create a reference to an SMO Restore object:
$smoRestore = New-Object Microsoft.SglServer.Management.Smo.Restore;

The ReadBackupHeader method of the Microsoft.SglServer.Management .Smo.
Restore class lists all the backup headers for all backup sets contained in a backup device
or file. The information it returns includes:

» BackupName and Description

» BackupType

» Compressed

» ServerName

» DatabaseName

» DatabaseVersion and DatabaseCreationDate

» BackupSize

» CheckpointLSN

» DatabaseBackupLSN

» Backup start and finish date
We will also need to create a reference to the backup file or backup device from which we

wish to read the information. We do this by adding the backup file using the AddbDevice
method of the Restore object.

Sbackupfile = "AdventureWorks2008R2_Full 20120205231407.bak"

#change this to where your backup directory is

#in our case we're using default backup directory
Sbackupfilepath = Join-Path $server.Settings.BackupDirectory
Sbackupfile

$smoRestore.Devices.AddDevice ($Sbackupfilepath, [Microsoft.SglServer.
Management .Smo.DeviceType] : :File)

To retrieve the backup header, just invoke the ReadBackupHeader method of the Restore
object and pass in the server object as an argument.

$smoRestore.ReadBackupHeader ($server)

The file list contains the actual database and logfiles associated in a particular backup set.
Listing the file list requires a very similar syntax to reading the backup header. We need
to invoke the method ReadFileList, passing the server object as an argument again.

SsmoRestore.ReadFilelList ($server)

Backup and Restore

See also...

» Read more about the Restore class methods:

http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management .smo.restore methods (v=sgl.110) .aspx

Creating a full backup

In this recipe, we will look at how we can do a full database backup using PowerShell.

Getting ready

We will use the AdventureWorks2008R2 database for this recipe. We will create a full
compressed backup of the database to a timestamped .bak file in the C: \Backup folder.
Feel free to use a database of your choice for this task.

The T-SQL syntax that will be generated by this PowerShell recipe will look similar to:

BACKUP DATABASE [AdventureWorks2008R2]

TO DISK = N'C:\Backup\AdventureWorks2008R2 Full 20120227092409.bak"'
WITH NOFORMAT, INIT,

NAME = N'AdventureWorks2008R2 Full Backup',

NOSKIP, REWIND, NOUNLOAD, COMPRESSION,

STATS = 10, CHECKSUM

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

$instanceName = "KERRIGAN"

Sserver = New-Object -TypeName Microsoft.SglServer.Management.
Smo.Server -ArgumentList S$instanceName

$databasename = "AdventureWorks2008R2"
Stimestamp = Get-Date -Format yyyyMMddHHmmss

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.restore_methods(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.restore_methods(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.restore_methods(v=sql.110).aspx

Chapter 6

$backupfolder = "C:\Backup\"
$backupfile = "s$(sdatabasename) Full $($timestamp) .bak"
$fullBackupFile = Join-Path $backupfolder S$backupfile

Backup-SglDatabase

-ServerInstance $instanceName

-Database S$databasename

-BackupFile $fullBackupFile

-Checksum ~

-Initialize

-BackupSetName "$databasename Full Backup"
-CompressionOption On

Check your C: \Backup directory and confirm that the timestamped backup file has
been created.

4. Confirm by reading the backup header. Add the following script and run:

#iconfirm by reading the header

#backup type for full is 1

#this is a block of code you would want to put
#in a function so you can use anytime

$smoRestore = New-Object Microsoft.SglServer.Management.Smo.
Restore

$smoRestore.Devices.AddDevice ($fullBackupFile, [Microsoft.
SglServer.Management .Smo.DeviceType] : :File)

$smoRestore.ReadBackupHeader ($server)
SsmoRestore.ReadFileList ($Sserver)

In this recipe, we first create a timestamped filename:

Sdatabasename = "AdventureWorks2008R2"

Stimestamp = Get-Date -Format yyyyMMddHHmmss
$backupfolder = "C:\Backup\"

$backupfile = "$(sdatabasename) Full $($timestamp) .bak"
$fullBackupFile = Join-Path $backupfolder S$backupfile

This will give you a filename similar to this:
C:\Backup\AdventureWorks2008R2 Full 20120227092409.bak

Next, you need to invoke the Backup-SglDatabase cmdlet. The Backup-SglDatabase
cmdlet has been introduced for SQL Server 2012, and this cmdlet encapsulates a lot of the
options that used to be available only via SMO.

Backup and Restore

It is imperative, for this recipe, that we use the Get -Help cmdlet for the Backup-
SglDatabase cmdlet first, to know which parameters are available.

Here is one part of the help content:

SYNTAX

Backup-SglDatabase [-Database] <string> [[-BackupFile]
<string[]>] [-BackupAction <BackupActionType>] [-BackupDevice
<BackupDeviceItem[] >]

[-BackupSetDescription <string>] [-BackupSetName

<string>] [-BlockSize <int>] [-BufferCount <int>] [-Checksum]
[-CompressionOption

<BackupCompressionOptions>] [-ContinueAfterError] [-CopyOnly]
[-DatabaseFile <string[]>] [-DatabaseFileGroup <stringl[]s>]
[-ExpirationDate

<DateTime>] [-Format] [-Incremental] [-Initializel]
[-LogTruncationType <BackupTruncateLogType>] [-MaxTransferSize <int>]
[-MediaDescription

<string>] [-MediaName <string>] [-MirrorDevices
<BackupDeviceList []>] [-NoRecovery] [-NoRewind] [-Passthru] [-Path
<string[]>] [-Restart]

[-RetainDays <int>] [-SkipTapeHeader] [-UndoFileName <strings>]
[-UnloadTapeAfter] [-Confirm] [-WhatIf] [<CommonParameterss]

At the time of writing this book, there are still some corrections that need to be made to

the help contents for Backup-SglDatabase. This is documented in this MS Connect

item http://connect.microsoft.com/SQLServer/feedback/details/683594/
backup-sgldatabase-cmdlet-help. The content of the help, nevertheless, is still useful
in getting you up and running with the cmdlet.

In our recipe, this is the command we executed:

Backup-SglDatabase
-ServerInstance $instanceName
-Database $databasename
-BackupFile $fullBackupFile °
-Checksum ~

<~

-Initialize
-BackupSetName "S$databasename Full Backup" °
-CompressionOption On

Note that we used the line continuation character back tick (*) for readability purposes, so we
can align each parameter at the same position on each line.

http://connect.microsoft.com/SQLServer/feedback/details/683594/backup-sqldatabase-cmdlet-help
http://connect.microsoft.com/SQLServer/feedback/details/683594/backup-sqldatabase-cmdlet-help

Chapter 6

Let's explain in more detail these options that we have chosen:

Parameter Explanation

-ServerInstance Instance to backup

SinstanceName

-Database Database to backup

Sdatabasename

-BackupFile Backup file name

sfullBackupFile

-Checksum Enable backup checksum, which can be used
in restore operation to determine if backup file
is corrupt

-Initialize Specifies backup set contained in the file or
backup device will be overwritten

-BackupSetName Backup set name

"Sdatabasename Full

Backup"

-CompressionOption On Specifies whether compression should be
applied to the backup file

You can also provide the complete enum
reference for the CompressionOption value:

-CompressionOption ([Microsoft.
SglServer.Management .Smo.
BackupCompressionOptions] : :0n)

Once you get more familiar with the Backup-SglDatabase cmdlet, you will soon realize that
all other backup types will be just a matter of adding or changing some of these parameters.

Although there is already a cmdlet available for backing up databases, it will also be useful to
look at how you can do the backups via SMO. Using SMO may be the more code-heavy way of
tackling a database backup in PowerShell, but it is nonetheless still very powerful and flexible.

The cmdlet can be viewed as simply a wrapper to the SMO backup methods. Taking a peek at
how this is done can be a beneficial exercise.

The first few steps for this approach are similar to the steps we have for this recipe:
import SQLPS, and create the SMO server object. After that, we will need to create
an SMO Backup object.

Sdatabasename = "AdventureWorks2008R2"
Stimestamp = Get-Date -Format yyyyMMddHHmmss
$Sbackupfolder = "C:\Backup\"

Backup and Restore

$backupfile = "s$(sdatabasename) Full $($timestamp) .bak"
$fullBackupFile = Join-Path Sbackupfolder sbackupfile

#This belongs in Microsoft.SglServer.SmoExtended assembly
$smoBackup = New-Object Microsoft.SglServer.Management.Smo.Backup

With a handle to the SMO backup object, you will have more granular control over what values
are set to which properties. Action can be any of Database, File, or Log.

$smoBackup.Action = [Microsoft.SglServer.Management.Smo.
BackupActionType] : :Database

$smoBackup.BackupSetName = "$databasename Full Backup"
$smoBackup.Database = $databasename
$smoBackup.MediaDescription = "Disk"

$smoBackup.Devices.AddDevice ($fullBackupFile, "File")
$smoBackup.Checksum = Strue

S$smoBackup.Initialize = S$true

$smoBackup.CompressionOption = [Microsoft.SglServer.Management.Smo.
BackupCompressionOptions] ::0n

You can also optionally set up your own event notification on the backup progress using the
Microsoft.SglServer.Management .Smo.PercentCompleteEventHandler and
Microsoft.SglServer.Management .Common. ServerMessageEventHandler classes.

#ithe notification part below is optional
#it just creates an
#event handler that indicates progress every 20%
$smoBackup.PercentCompleteNotification = 20
SpercentEventHandler = [Microsoft.SglServer.Management.Smo.
PercentCompleteEventHandler] {

Write-Host "Backing up $($databasename)...$($_.Percent) %"
}
ScompletedEventHandler = [Microsoft.SglServer.Management .Common.
ServerMessageEventHandler] {

Write-Host $.Error.Message
}
$smoBackup.add PercentComplete ($percentEventHandler)
$smoBackup.add Complete ($completedEventHandler)

When done setting the properties, you can just invoke the SqlBackup method of the SMO
Backup class and pass the server object:

#tbackup
$smoBackup.SglBackup ($server)

Conversely, when you do a restore with SMO, the steps are going to be pretty similar. You
will need to create the SMO Restore object, set the properties, and call the SglRestore
method of the Restore class in the end.

320

Chapter 6

More about Backup and PercentCompleteEventHandler
Learn more about these SMO classes:
» BackupRestoreBase: http://msdn.microsoft.com/en-us/library/

microsoft.sglserver.management.smo.backuprestorebase.
percentcomplete.aspx

» PercentCompleteEventHandler: http://msdn.microsoft.com/
en-us/library/microsoft.sglserver.management.smo.
percentcompleteeventhandler.aspx

» The Creating a backup on mirrored media sets recipe
» The Creating a differential backup recipe
» The Creating a transaction log backup recipe

» The Creating a filegroup backup recipe

Creating a backup on mirrored media sets

In this recipe, we will create a full database backup on mirrored backup files.

Getting ready

We will use the AdventureWorks2008R2 database for this recipe. We will create a mirrored
backup of the database, and both timestamped backup files will be stored in C: \Backup.
Feel free to substitute this with the database you want to use with mirrored backups.

The T-SQL syntax that will be generated by this PowerShell recipe will look similar to:

BACKUP DATABASE [AdventureWorks2008R2]
TO DISK = N'AdventureWorks2008R2.bak'
MIRROR

TO DISK = N'C:\Backup\AdventureWorks2008R2 Full 20120227092409_ Copyl.
bak'

MIRROR TO DISK = N'C:\Backup\AdventureWorks2008R2
Full 20120227092409 Copy2.bak'

WITH FORMAT, INIT,
NAME = N'AdventureWorks2008R2 Full Backup', SKIP, REWIND,
NOUNLOAD, COMPRESSION, STATS = 10, CHECKSUM

321

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backuprestorebase.percentcomplete.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backuprestorebase.percentcomplete.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backuprestorebase.percentcomplete.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.percentcompleteeventhandler.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.percentcompleteeventhandler.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.percentcompleteeventhandler.aspx

Backup and Restore

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Sdatabasename = "AdventureWorks2008R2"

#create filenames, which we will use as Device
Sdatabasename = "AdventureWorks2008R2"
Stimestamp = Get-Date -Format yyyyMMddHHmmss
$backupfolder = "C:\Backup\"

$backupfilel = Join-Path $backupfolder "$ ($databasename)
Full s(sStimestamp) Copyl.bak"

$backupfile2 = Join-Path $backupfolder "$ ($databasename)
Full s(Stimestamp) Copy2.bak"

#icreate a backup device list

#in this example, we will only use two (2)
#mirrored media sets

#inote a maximum of four (4) is allowed

SbackupDevices = New-Object Microsoft.SglServer.Management.Smo.
BackupDeviceList (2)

SbackupDevices.AddDevice ($backupfilel, [Microsoft.SglServer.
Management . Smo.DeviceType] : :File)

SbackupDevices.AddDevice ($backupfile2, [Microsoft.SglServer.
Management . Smo.DeviceType] : :File)

#backup database

Backup-SglDatabase

-ServerInstance $instanceName

-Database S$databasename

-BackupSetName "$databasename Full Backup"
-Checksum ~

-Initialize

-FormatMedia

322

Chapter 6

-SkipTapeHeader ~
-MirrorDevices S$backupDevices
-CompressionOption On

4. Open your C:\Backup folder and confirm that the two timestamped backup files
have been created.

With SQL Server, it is possible to create a backup with up to four mirrors per media set.
Mirrored media sets allow you to have multiple copies of that backup, which are stored
in different backup devices.

For our recipe, we must first create a set of files that we will use to save our backup to.

#icreate backup devices

#in this example, we will only use two (2) mirrored media sets
#inote a maximum of four (4) is allowed

Sdatabasename = "AdventureWorks2008R2"

Stimestamp = Get-Date -Format yyyyMMddHHmmss

$backupfolder = "C:\Backup\"

S$backupfilel = Join-Path $backupfolder "$ ($databasename)
Full s (Stimestamp) Copyl.bak"
S$backupfile2 = Join-Path $backupfolder "$ ($databasename)
Full s(Stimestamp) Copy2.bak"

We then need to add these files' backup devices to our BackupDeviceList object. The value
that we pass to our BackupDeviceList constructor, represents the number of backup devices
we are adding. A maximum of four is allowed for mirrored media.

SbackupDevices = New-Object Microsoft.SglServer.Management.Smo.
BackupDeviceList (2)

SbackupDevices.AddDevice ($backupfilel, [Microsoft.SglServer.
Management . Smo.DeviceType] : :File)

SbackupDevices.AddDevice ($backupfile2, [Microsoft.SglServer.
Management . Smo.DeviceType] : :File)

In the Backup-SqglDatabase cmdlet, the highlighted code in the following snippet shows
the options that enable mirrored backups. Note that we used the line continuation character
backtick (") for readability purposes, so we can align each parameter at the same position on
each line.

#backup database

Backup-SglDatabase

-ServerInstance $instanceName

-Database S$databasename

323

Backup and Restore

-BackupSetName "$databasename Full Backup"
-Checksum ~

-Initialize ~

-FormatMedia ~

-SkipTapeHeader ~

-MirrorDevices $backupDevices ~
-CompressionOption On

Let's explain a bit more about some of these highlighted options:

Parameter Explanation

-Initialize Specifies backup set contained in the file or backup
device will be overwritten

-FormatMedia Overwrites existing media header information, and
creates a new media set

-SkipTapeHeader Skip checking backup tape expiration

-MirrorDevices Allows backup on mirrored media sets; accepts a
BackupDevicelList array

See also

» The Creating a full backup recipe

» The Creating a differential backup recipe

» The Creating a transaction log backup recipe

» The Creating a filegroup backup recipe

» Learn more about mirrored backup media sets:

http://msdn.microsoft.com/en-us/library/msl175053 (v=sgl.110) .
aspx

Creating a differential backup

This recipe shows how you can create a differential backup on your database.

Getting ready

We will use the AdventureWorks2008R2 database for this recipe. We will create
a differential compressed backup of the database to a timestamped .bak file in the
C:\Backup folder. Feel free to use a database of your choice for this task.

http://msdn.microsoft.com/en-us/library/ms175053(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms175053(v=sql.110).aspx

Chapter 6

The T-SQL syntax that will be generated by this PowerShell recipe will look similar to:

BACKUP DATABASE [AdventureWorks2008R2]

TO DISK = N'C:\Backup\AdventureWorks2008R2 Diff 20120227092409.bak'
WITH DIFFERENTIAL , NOFORMAT, INIT,

NAME = N'AdventureWorks2008R2 Diff Backup',

NOSKIP, REWIND, NOUNLOAD, COMPRESSION,

STATS = 10, CHECKSUM

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the sQL.PS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Sdatabasename = "AdventureWorks2008R2"

Stimestamp = Get-Date -Format yyyyMMddHHmmss
$backupfolder = "C:\Backup\"

S$backupfile = "$(sdatabasename) Diff $(Stimestamp) .bak"

SdiffBackupFile = Join-Path $backupfolder S$backupfile

<~

Backup-SglDatabase
-ServerInstance $instanceName °
-Database $databasename

-BackupFile $diffBackupFile

<~

<~

-Checksum
-Initialize

<

-Incremental

-BackupSetName "$databasename Diff Backup"
-CompressionOption On

4. Confirm by reading the backup header. Add the following script and run:

#confirm by reading the header

#backup type for differential is 5

#this is a block of code you would want to put
#in a function so you can use anytime

325

Backup and Restore

$smoRestore = New-Object Microsoft.SglServer.Management.Smo.
Restore

$smoRestore.Devices.AddDevice ($diffBackupFile, [Microsoft.
SglServer.Management .Smo.DeviceType] : :File)
$smoRestore.ReadBackupHeader ($server)
SsmoRestore.ReadFileList ($Sserver)

A differential backup captures all changes to a database since the last full backup.
Creating a differential backup in PowerShell is very similar to creating a full backup
when using the Backup-SglDatabase cmdlet, with a slight change in the set of
options that need to be specified.

Backup-SglDatabase

-ServerInstance $instanceName

-Database S$databasename
-BackupFile $diffBackupFile

-Checksum
-Initialize ~

~

-Incremental

-BackupSetName "$databasename Diff Backup"
-CompressionOption On

The one option that differentiates a full and differential backup is the option -Incremental.

4 More information about these options used with the Backup-

SglDatabase cmdlet is explained in more details in the

Creating a full backup recipe.

To do a differential backup using SMO, the code will be similar to the SMO code you would
use with a full backup. The one line that you will need to add is:

$smoBackup.Incremental = Strue
Check out a more detailed example and explanation of how to use

SMO for backups, instead of the Backup-SglDatabase cmdlet,
in the Creating a full backup recipe.

326

Chapter 6

See also

» The Creating a full backup recipe
» The Creating a backup on mirrored media sets recipe
» The Creating a transaction log backup recipe

» The Creating a filegroup backup recipe

Creating a transaction log backup

In this recipe, we will create a transaction log backup.

Getting ready

We will use the AdventureWorks2008R2 database for this recipe. We will create a
timestamped transaction log backup file in the C: \Backup folder. Feel free to use a
database of your choice for this task.

Ensure the recovery model of the database you are backing up is either Full or BulkLogged.
You can use the Changing database recovery model recipe as a reference. The main code you
can execute to query the current recovery model setting of your database is:

$database.DatabaseOptions.RecoveryModel
You can also check this using SQL Server Management Studio.

» Loginto SSMS
» Expand Databases, and right-click on AdventureWorks2008R2
» Go to Properties | Options and check the Recovery Model value

The T-SQL syntax that will be generated by this PowerShell recipe will look similar to:

BACKUP LOG [AdventureWorks2008R2]
TO DISK = N'C:\Backup\AdventureWorks2008R2 Txn 20120815235319.bak’
WITH NOFORMAT, NOINIT, NOSKIP, REWIND, NOUNLOAD, STATS = 10

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

327

Backup and Restore

3. Add the following script and run:

SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

#icreate a transaction log backup

Sdatabasename = "AdventureWorks2008R2"

Stimestamp = Get-Date -Format yyyyMMddHHmmss
$backupfolder = "C:\Backup\"

Sbackupfile = "s$($databasename) Txn $($timestamp) .bak"

S$txnBackupFile = Join-Path $backupfolder $backupfile

Backup-SglDatabase
-BackupAction Log
-ServerInstance $instanceName
-Database $databasename
-BackupFile $txnBackupFile

Transaction log backups are only permitted if the database you are backing up is in either the
Full or BulkLogged Recovery Model. To create a transaction log backup using the Backup-
SqglDatabase cmdlet, there is one option that must be specified:

~

Backup-SglDatabase
-BackupAction Log ~
-ServerInstance $instanceName ~
-Database $databasename

-BackupFile $txnBackupFile

When backing up databases, one of the most important parameters is BackupAction, which
accepts three valid values: Database, Files, and Log.

You can also optionally use the fully qualified name of the BackupActionType enumeration:

-BackupAction ([Microsoft.SglServer.Management.Smo.
BackupActionType] : :Log

328

Chapter 6

Additional options you can specify when doing transaction log backups are:

Parameter Explanation

-NoRecovery Required when you are taking tail log backups; this
puts the database in the Restoring state, and the log
is not truncated

-LogTruncationType Accepts an SMO BackupTruncateLogType
enumeration value, which is one of: NoTruncate,
Truncate, and TruncateOnly

There's more...

Tail log backups will contain anything that hasn't been backed up yet. These backups are
usually taken in the event of a disaster, or just before a restore operation. Taking a tail log
backup leaves the database in a Restoring state, that is, in an inaccessible state to
prevent further changes.

See also

» The Creating a backup on mirrored media sets recipe
» The Creating a full backup recipe

» The Creating a differential backup recipe

» The Creating a filegroup backup recipe

» Learn more about tail log backups here:

http://msdn.microsoft.com/en-us/library/msl179314 (v=sgl.110) .
aspx

Creating a filegroup backup

In this recipe, we will create a filegroup backup using the Backup-SglDatabase
PowerShell cmdlet.

Getting ready

For testing purposes, let's create a small sample database called StudentDB that contains
a couple of filegroups called FG1 and FG2. Each filegroup will have two datafiles.

Open up SQL Server Management Studio and run the following script:

CREATE DATABASE [StudentDB]
ON PRIMARY

329

http://msdn.microsoft.com/en-us/library/ms179314(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms179314(v=sql.110).aspx

Backup and Restore

(NAME = N'StudentDB', FILENAME = N'C:\Temp\StudentDB.mdf'),
FILEGROUP [FG1]

(NAME = N'StudentDatal', FILENAME
(NAME = N'StudentData2',6 FILENAME
FILEGROUP [FG2]

(NAME = N'StudentData3', FILENAME
LOG ON

(NAME = N'StudentDB_log', FILENAME = N'C:\Temp\StudentDB.1ldf')

GO

N'C:\Temp\StudentDatal.ndf'),
N'C:\Temp\StudentData2.ndf '),

N'C:\Temp\StudentData3.ndf"')

We will use this database to do our filegroup backup.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Sdatabasename = "StudentDB"
Stimestamp = Get-Date -Format yyyyMMddHHmmss

#icreate a file to backup FGl filegroup

$backupfolder "C:\Backup\"

$backupfile = "s$(sdatabasename) FGl $(Stimestamp) .bak"
$fgBackupFile = Join-Path S$backupfolder $backupfile

Backup-SglDatabase
-BackupAction Files
-DatabaseFileGroup "FG1"
-ServerInstance $instanceName

-Database S$databasename
-BackupFile $fgBackupFile
-Checksum ~

-Initialize

-BackupSetName "$databasename FG1 Backup"
-CompressionOption On

330

Chapter 6

#iconfirm by reading the header

#backup type for files is 4

#this is a block of code you would want to put
#in a function so you can use anytime

$smoRestore = New-Object Microsoft.SglServer.Management.Smo.
Restore

$smoRestore.Devices.AddDevice ($fgBackupFile, [Microsoft.SglServer.
Management . Smo.DeviceType] : :File)

$smoRestore.ReadBackupHeader ($server)

Backing up filegroups can be considered a practical alternative for VLDBs, or very large
databases, where a full backup can take up impractical amounts of space and time. With
filegroup backups, you can strategize which filegroups to back up more frequently and
which ones less frequently. Filegroup backups also enable you to take advantage of online
piecemeal restores for Enterprise Edition of SQL Server, starting with SQL Server 2005.

See the Performing an online piecemeal restore recipe for more details.

In our recipe, we chose to backup FG1. Our main backup command looks like this:

Backup-SglDatabase
-BackupAction Files
-DatabaseFileGroup "FG1"

-ServerInstance S$instanceName

~

-Database $databasename

-BackupFile $fgBackupFile

-Checksum ~

-Initialize

-BackupSetName "$databasename FG1 Backup"
-CompressionOption On;

Notice the highlighted lines of code. These lines enable the filegroup backups. For the
BackupAction parameter, we have to specify Files. The other options for BackupAction
are Database and Log.

Once we have specified that we want the Files value for the BackupAction
parameter, we should also pass the name of the filegroup we want to back up using
the DatabaseFileGroup parameter.

331

Backup and Restore

See also

» The Creating a backup on mirrored media sets recipe
» The Creating a full backup recipe

» The Creating a differential backup recipe

» The Creating a transaction log backup recipe

» The Performing an online piecemeal restore recipe

» Learn more about backing up files and filegroups:

http://msdn.microsoft.com/en-us/library/msl179401 (v=sgl.110) .
aspx

Restoring a database to a point in time

In this recipe, we will use the different backup files we have to restore to a point in time.

Getting ready

In this recipe, we will use the AdventureWorks2008R2 database. You can also substitute
this with your preferred database on your development environment.

The AdventureWorks2008R2 database has a single filegroup that contains a single datafile.
We will restore this database to another SQL Server instance at a different point in time using
three different backup files from three different backup types:

» Full backup

» Differential backup

» Transaction log backup
We can create these three types of backups on the AdventureWorks2008R2 database

using PowerShell as illustrated in previous recipes. If you are fairly comfortable with T-SQL,
this can also be done with T-SQL backup commands.

To help us verify if our point-in-time restore worked as expected, create a timestamped table
before taking any type of backup. Alternatively, create a table and insert a timestamped record
in the table before taking a backup.

Place these backups in the folder called C:\Backup\.

332

http://msdn.microsoft.com/en-us/library/ms179401(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms179401(v=sql.110).aspx

Chapter 6

. = Computer = Local Disk {C:) = Backup
Indude in library « | Share with + Mew folder
MName “ Date modified Type
|| AdventureWorks2008R2_Diff_201204070819.bak 4/7/2012 8:19 AM BAK File
|| AdventureWorks2008R 2_Full_201204070818.bak 4/7/2012 8:18 AM BAK File
|| AdventureWorks 2008R2_Txn_201204070820.bak 4/7/2012 8:20 AM BAK File
|| AdventureWorks2008R2_Txn_201204070821.bak 4/7/20128:21 AM BAK File
|| AdventureWorks 2008R2_Txn_201204070822.bak 4/7/20128:22 AM BAK File
|| AdventureWorks2008R2_Txn_201204070823.bak 472012 8:23 AM BAK File

You can use the following script to create your files 6464 - Ch05 - 10 - Restore a database
to a point in time - Prep.ps1, which is included in the downloadable files for this book. When
the script has finished executing, you should have timestamped Student tables in the
AdventureWorks2008R2 database, created within one minute intervals, similar to the

following screenshot:

= | KERRIGAN (SGL Server 11.0,2100 - KERRIGAN\Administrator)
= [Databases
[System Databases
|1 Database Snapshots
= |) AdventureWorks2008R2
| Database Diagrams
= [Tables (filtered)
[System Tables
|1 FileTables
=1 dbo.Student
=1 dbo.StudentDiff_20120407031%
=1 dbo.StudentFull_201204070818
=1 dbo.StudentTxn_201204070820
=1 dbo.StudentTxn_201204070821
1 dbo.StudentTxn_201204070322
1 dbo.StudentTxn_201204070823

F EHEHEBEEE

For our recipe, we will restore the AdventureWorks2008R2 database to a second instance,
KERRIGAN\SQLO01, up to 2012-04-07 08:21:59. This means that after the point-in-time

restore, we should have only four timestamped Student tables in KERRIGAN\SQLO1

restored database:

» StudentFull 201204070818
» StudentDiff 201204070819
» StudentTxn 201204070820
» StudentTxn 201204070821

333

Backup and Restore

How to do it...

To restore to a point in time using a full, differential, and several transaction logfiles, follow
these steps:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

$instanceName = "KERRIGAN\SQLO1"

$server = New-Object -TypeName Microsoft.SglServer.Management.
Smo.Server -ArgumentList $instanceName

#backupfilefolder
$backupfilefolder = "C:\Backup\"

#look for the last full backupfile

#you can be more specific and specify filename
$fullBackupFile =

Get-ChildItem $backupfilefolder -Filter "*Full*" |
Sort -Property LastWriteTime -Descending |

Select -Last 1

#read the filelist info within the backup file
#so that we know which other files we need to restore

$smoRestore = New-Object Microsoft.SglServer.Management.Smo.
Restore

$smoRestore.Devices.AddDevice ($fullBackupFile.FullName,
[Microsoft.SglServer.Management .Smo.DeviceType] : :File)

sfilelist = $smoRestore.ReadFilelList (S$Sserver)

#iread headers of the full backup file,

#because we are restoring to a default instance, we will
#need to specify we want to move the files

#to the default data directory of our KERRIGAN\SQLO1l instance
SrelocateFilelList = @()

SrelocatePath = "C:\Program Files\Microsoft SQL Server\MSSQL1ll.
SQL01\MSSQL\DATA"

Chapter 6

#we are putting this in an array in case we have
#multiple data and logfiles associated with the database
foreach($file in $fileList)
{

#irestore to different instance

#ireplace default directory path for both

SrelocateFile = Join-Path SrelocatePath (Split-Path $file.
PhysicalName -Leaf)

SrelocateFilelList += New-Object Microsoft.SglServer.
Management . Smo.RelocateFile ($file.LogicalName, SrelocateFile)

}

#let's timestamp our restored databasename
#this is strictly for testing our recipe
Stimestamp = Get-Date -Format yyyyMMddHHmmss

SrestoredDBName = "AWRestored $($timestamp)"
Hos——=———————————=———————=———=—=—=====——===============
#restore the full backup to the new instance name
Hos——=———————————=———————=———=—=—=====——===============

#inote we have a NoRecovery option, because we have
#additional files to restore

Restore-SglDatabase

-ReplaceDatabase

-ServerInstance $instanceName

-Database S$restoredDBName °~
-BackupFile $fullBackupFile.FullName
-RelocateFile SrelocateFilelList

-NoRecovery

#restore last differential
#note the database is still in Restoring State

#using PowerShell V2 Where syntax

SdiffBackupFile =

Get-ChildItem $backupfilefolder -Filter "*Diff*" |

Where {$_ .LastWriteTime -ge $fullBackupFile.LastWriteTime} |
Sort -Property LastWriteTime -Descending |

Select -Last 1

Restore-SglDatabase
-ReplaceDatabase

335

Backup and Restore

336

-ServerInstance $instanceName
-Database S$restoreddbname
-BackupFile $diffBackupFile.FullName
-NoRecovery

#restore all transaction log backups from last
#differential up to 2012-04-07 08:21:59

#identify the last txn log backup file we need to restore
#we need this so we can specify point in time
$lastTxnFileName = "AdventureWorks2008R2 Txn 201204070821"

$lastTxnBackupFile =
Get-ChildItem Sbackupfilefolder -Filter "*$SlastTxnFileName*"

#restore all transaction log backups after the
#last differential, except the last transaction
#backup that requires the point-in-time restore

foreach ($txnBackup in Get-ChildItem S$backupfilefolder -Filter
"ATXRF" |
Where {$.LastWriteTime -ge $diffBackupFile.LastWriteTime -and
$.LastWriteTime -1t $lastTxnBackupFile.LastWriteTime} |
Sort -Property LastWriteTime)
{

Restore-SglDatabase

-ReplaceDatabase

-ServerInstance $instanceName

-Database S$restoreddbname

-BackupFile S$txnBackup.FullName

-NoRecovery

#restore last txn backup file to point in time
#restore only up to 2012-04-07 08:21:59

#this time we are going to restore using with recovery
Restore-SglDatabase

-ReplaceDatabase

-ServerInstance $instanceName

-Database S$restoreddbname

-BackupFile $lastTxnBackupFile.FullName

-ToPointInTime "2012-04-07 08:21:59"

Chapter 6

In this recipe, we are using the Restore-SglDatabase cmdlet, the counterpart of the
Backup-SglDatabase cmdlet that was introduced in SQL Server 2012.

Let's get a high-level overview of how to perform a point-in-time restore, and then we can
break it down and explain the pieces involved in this recipe:

1. Gather your backup files.

o ldentify the last transaction log backup file that contains the point you want
to restore to.

2. Restore the last good full backup with NORECOVERY.

3. Restore the last good differential backup taken after the full backup you just restored
with NORECOVERY.

4. Restore the transaction logs taken after your differential backup:

o You can restore up to and including the log backup that contains the data to
the point in time you want to restore with NORECOVERY. You need to restore
the last log backup to a point in time, that is, you need to specify up to when
to restore. Lastly, restore the database using WITH RECOVERY to make the
database accessible and ready to use.

o Or, you can restore all transaction log backup files before the log backup that
contains the data to the point in time you want to restore with NORECOVERY.
Next, restore the last log backup using WITH RECOVERY to a pointin time,
that is, you need to specify up to when to restore.

Step 1 — Gather your backup files

You will need to collect your backup files. They don't necessarily have to reside in the same
folder or drive, but it will be ideal, as it can simplify your restore script because you will have
a uniform folder/drive to refer to. You will also need read permissions for these files.

In our recipe, we have simplified this step. We have collected our full, differential, and
transaction log backup files and stored them in the C:\Backup)\ folder for ease of access.
If your backup files reside in different locations, you will just need to adjust the directory
references in your script appropriately.

Once you have the backup files, assuming you follow a file naming convention, you can

filter out all the full backups in your directory. In our sample, we are using the convention
databasename type timestamp.bak. For this scenario, we can extract that one full
backup file by specifying the keyword or pattern in our filename. We use the Get-ChildItem
cmdlet to filter for the latest full backup file:

#look for the last full backupfile
#you can be more specific and specify filename

337

Backup and Restore

$fullBackupFile =

Get-ChildItem $backupfilefolder -Filter "*Full*" |
Sort -Property LastWriteTime -Descending |

Select -Last 1

Once you have the full backup handle, you can read the filelist that is stored in that backup
file. You can use the ReadFileList method that is available with an SMO Restore object.
Reading the filelist can help you automate by extracting the filenames of the data and logfiles
you will need to restore.

#iread the filelist info within the backup file
#so that we know which other files we need to restore
$smoRestore = New-Object Microsoft.SglServer.Management.Smo.Restore

$smoRestore.Devices.AddDevice ($fullBackupFile.FullName, [Microsoft.
SglServer.Management .Smo.DeviceType] : :File)

Sfilelist = $smoRestore.ReadFilelList (Sserver)

When reading the filelist, one property you can extract is the type of file that is stored:

LogicalName : AdventurewWorks2008R2_Data
PhysicalName : C:“\Program Files'Microsoft SQL Server‘M55QL
[Type : D |

F1leGroupName : PRIMARY

Size 1 226230272

MaxSize : 35184372080640

Fileld 01

Createl SN HL

DropLSN : 0

UniqueId : 7980eb62-3b40-4919-9693-ebbd5d24bTh2
ReadonTyLSN : 0

ReadWritelL 5N : 0

BackupSizeInBytes : 216858624

SourceBlockSize : 512

FileGroupId 1

LogGroupGUID =

DifferentialBaselLSN : 1047000000391700143
DifferentialBaseGUID : da9e2691-7b3a-4988-94a7-T46fd0312725
IsReadonly : False

IsPresent : True

The different types are:

» L= Logfile
» D = Database file
» F = FullText catalog

338

Chapter 6

Step 2 - Restore the last good full backup, with NORECOVERY

The first step in restore operations is to restore the last known good full backup. This
provides you a baseline to which you can restore additional files. The NORECOVERY option
is very important, as it preserves (or does not roll back) uncommitted transactions and
allows additional files to be restored. We will be using the NORECOVERY option throughout
our restore process.

Because the full backup is always the first file that needs to be restored, all the prep work
required when moving files also happens at this stage.

For our recipe, we want to restore the database, originally from the default instance KERRIGAN,
to another instance, KERRIGAN\SQLO1. For this reason, we will need to move our files from the
path stored with our backup file, to the new path we want to use. In this example we only want to
move from the default data directory of our default instance to the data directory of our named
instance KERRIGAN\SQLO01. We do this by retrieving the full paths of the original data and
logfiles from the filelist, and replacing the full path with the new location we want to restore to.
The highlighted code in the following snippet shows how we change this location:

SrelocateFileList = @()

SrelocatePath = "C:\Program Files\Microsoft SQL Server\MSSQL11.SQLO01\
MSSQL\DATA"

#we are putting this in an array in case we have
#imultiple data and logfiles associated with the database
foreach($file in $fileList)
{

#restore to different instance

#ireplace default directory path for both

$relocateFile = Join-Path $relocatePath (Split-Path $file.
PhysicalName -Leaf)

SrelocateFilelList += New-Object Microsoft.SglServer.Management.
Smo.RelocateFile($file.LogicalName, SrelocateFile)

}

Note that our array contains the Microsoft.SglServer.Management . Smo.RelocateFile
object, which will contain the logical and (relocated) physical names of our database files.

SrelocateFilelList += New-Object Microsoft.SglServer.Management.Smo.
RelocateFile($file.LogicalName, SrelocateFile)

To restore our database, we are simply going to use the Backup-SglDatabase cmdlet. There
are a couple of really important options here such as RelocateFile and NoRecovery.

#irestore the full backup to the new instance name
#inote we have a NoRecovery option, because we have
#additional files to restore

339

Backup and Restore

Restore-SglDatabase ~
-ReplaceDatabase ~
-ServerInstance $instanceName °~
-Database S$restoredDBName
-BackupFile $fullBackupFile.FullName =
-RelocateFile SrelocateFilelList °

~

-NoRecovery

Step 3 - Restore the last good differential backup taken after the
full backup you just restored, with NORECOVERY

Once the full backup is restored, we can add the last good differential backup following our full
backup. This is going to be a less involved process, because at this point we've already restored
our base database and relocated our files. We need to restore the differential backup with
NORECOVERY to prevent uncommitted transactions from being rolled back:

#using PowerShell V2 Where syntax

SdiffBackupFile =

Get-ChildItem $backupfilefolder -Filter "*Diff*" |

Where {$.LastWriteTime -ge $fullBackupFile.LastWriteTime} |
Sort -Property LastWriteTime -Descending |

Select -Last 1

Restore-SglDatabase ~
-ReplaceDatabase ~
-ServerInstance S$instanceName °~
-Database S$restoreddbname °
-BackupFile $diffBackupFile.FullName °

-NoRecovery

Note that you may, or may not, have a differential backup file in your environment. If you don't,
don't worry, it does not affect your recoverability as long as you have all the transaction log
backup files intact and available for restore.

Step 4 - Restore the transaction logs taken after your differential
backup

After we restore our differential backup file, we can start restoring our transaction log backup

files. These transaction log backup files should be the ones following your differential backup.
You may, or may not, need the complete set of logfiles following your differential backup. If you
need to restore up to the point of a database crash, you will need to restore all transaction log
backups including the tail log backup. If not, you will only need the backup files up to the time

to which you want to restore.

For our recipe, we identify first the last transaction log backup file we want to restore. This is
important because we need to know how to use a Point InTime parameter when we use this
particular transaction log backup file.

340

Chapter 6

#identify the last txn log backup file we need to restore
#we need this so we can specify point in time
$lastTxnFileName = "AdventureWorks2008R2 Txn 201204070821"

$lastTxnBackupFile =
Get-ChildItem Sbackupfilefolder -Filter "*$SlastTxnFileName*"

For all other transaction log backup files, we loop through our backup folder and restore all
.txn files that were taken after the last differential backup, and before the last transaction log
backup file we want to restore. We also need to sort the files by the WriteTime parameter so
that we can restore them sequentially to our database. Note that we need to restore all these
files with NORECOVERY.

foreach ($txnBackup in Get-ChildItem $backupfilefolder -Filter "*Txn*"
|

Where {$.LastWriteTime -ge $diffBackupFile.LastWriteTime -and
$.LastWriteTime -1t $lastTxnBackupFile.LastWriteTime} |

Sort -Property LastWriteTime)

{

Restore-SglDatabase

-ReplaceDatabase

-ServerInstance $instanceName
-Database S$restoreddbname °
-BackupFile S$txnBackup.FullName

-NoRecovery

}

Once all these files are restored, then we are ready to restore the last transaction logfile. Once
this file is restored, the database needs to be accessible, and all uncommitted transactions
need to be rolled back.

There are two methods to do this. The first method, which we used in the recipe, is to restore
the last file with the ToPoint InTime parameter, and without the NoRecovery parameter.

Restore-SglDatabase

-ReplaceDatabase

-ServerInstance $instanceName

-Database S$restoreddbname

-BackupFile $lastTxnBackupFile.FullName
-ToPointInTime "2012-04-07 08:21:59"

An alternative is to restore this last transaction log backup file with NoRecovery as well, but
add another command in the end to restore the database using WITH RECOVERY. In reality,

it is safer to restore all the required transaction log backup files with NORECOVERY all the way
through. This is safer because if we accidentally restore a file using WITH RECOVERY, the only
way to correct it is to re-do the entire restore process. This may not be such a big deal

for smaller databases, but for bigger databases this could be very time-consuming.

341

Backup and Restore

Once we have confirmed that all the required files have been restored, we can restore the
database using WITH RECOVERY. One way to achieve this in our recipe, is by using a T-SQL
statement, and passing this statement to our Invoke-Sglcmd cmdlet:

#get the database out of Restoring state

#make the database accessible

$sgl = "RESTORE DATABASE S$restoreddbname WITH RECOVERY"
Invoke-Sglcmd -ServerInstance S$instanceName -Query $sgl

The RESTORE DATABASE command takes our database from a restoring state, to an
accessible and ready-to-use state. The RESTORE command rolls back all unfinished
transactions and readies the database for use.

» The Creating a backup on mirrored media sets recipe

» The Creating a full backup recipe

» The Creating a differential backup recipe

» The Creating a transaction log backup recipe

» The Performing an online piecemeal restore recipe

» You can check out how to do point-in-time restore using T-SQL:

http://msdn.microsoft.com/en-us/library/ms179451 (v=sgl.110) .
aspx

Performing an online piecemeal restore

In this recipe, we will perform an online piecemeal restore.

Getting ready

We will use a test database called sStudentDB database, which has three filegroups—one
primary, two custom filegroups FG1 and FG2—in this recipe. Each of FG1 and FG2 will have
one secondary datafile stored in the C: \ Temp folder.

You can use the script 6464 - Ch05 - 11 - Perform an Online PieceMeal Restore - Prep.ps1 to
create your files, which is included in the downloadable files for this book. When the script has
finished executing, you should see the following database:

342

http://msdn.microsoft.com/en-us/library/ms179451(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms179451(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms179451(v=sql.110).aspx

Chapter 6

= | J StudentDB
[Database Diagrams
= [Tables
[System Tables
[FileTables
=1 dbo.Student_FG1
=1 dbo.Student_FG2
=1 dbo.Student_PRIMARY
=1 dbo.Student_TXM

HHHMBME

This is how the tables will be structured:

Table Filegroup Datafile name Datafile location
Student PRIMARY PRIMARY StudentDB.mdf Default data
directory
Student_FG1 FG1 Student_FG1_ C:\Temp
data
Student_ FG2 FG2 Student FG2 C:\Temp
data
Student TXN PRIMARY StudentDB.mdf Default data
directory

For our recipe, we will restore only the PRIMARY filegroup, and filegroup FG2 to our second
SQL Server instance KERRIGAN\SQLO1. At the end of our task, only Student PRIMARY
and student_FG2 tables will be accessible.

Feel free to substitute this with a database available in your development environment that
already has separate filegroups and filegroup backups.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module as follows:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

SinstanceName = "KERRIGAN\SQLO1"

Sserver = New-Object -TypeName Microsoft.SglServer.Management.
Smo.Server -ArgumentList $instanceName

S$backupfolder = "C:\Backup\"

343

Backup and Restore

#let's timestamp our databasename
#this is strictly for testing and checking purposes
Stimestamp = Get-Date -Format yyyyMMddHHmmss

Srestoreddbname = "StudentDBRestored $($timestamp)"
SrelocatePath = "C:\Program Files\Microsoft SQL Server\MSSQL1ll.
SQL01\MSSQL\DATA"

#for this piecemeal restore, we need to specify
#files to restore

#primary filegroup
Sprimaryfgbackup = "C:\Backup\StudentDB PRIMARY.bak"

#additional filegroup(s) to restore, and filegroup name
$fg2backup = "C:\Backup\StudentDB FG2.bak"
$fg2name = "Student FG2 data"

#transaction log backup
Stxnbackup = "C:\Backup\StudentDB TXN.bak"

#because we want to restore to a different instance,
#we need to create an array of files which will
#icontain the new file locations of data and log
#files in the primary filegroup

SrelocateFilelList = @()

$smoRestore = New-Object Microsoft.SglServer.Management.Smo.
Restore
$smoRestore.Devices.AddDevice ($Sprimaryfgbackup , [Microsoft.
SglServer.Management .Smo.DeviceType] : :File)
$smoRestore.ReadFileList ($server) |
ForEach-Object ({

SrelocateFile = Join-Path $SrelocatePath (Split-Path
$.PhysicalName -Leaf)

SrelocateFileList += New-Object Microsoft.SglServer.
Management .Smo.RelocateFile ($.LogicalName, S$relocateFile)

#restore primary fg
#partial must be used if restoring primary fg

Chapter 6

#needs to be only mdf and 1df

Restore-SglDatabase

-Partial

-ReplaceDatabase
-ServerInstance $instanceName
-Database S$restoreddbname
-BackupFile S$primaryfgbackup
-RelocateFile SrelocateFilelList
-NoRecovery

#for the custom filegroup we want to restore, we want to
#irelocate only that filegroup's datafiles

$smoRestore = New-Object Microsoft.SglServer.Management.Smo.
Restore

$smoRestore.Devices.AddDevice ($fg2backup , [Microsoft.SglServer.
Management . Smo.DeviceType] : :File)

SsmoRestore.ReadFileList ($Sserver) |
ForEach-Object ({
if ($_.LogicalName -eq $fg2name)
{

SrelocateFile = Join-Path $SrelocatePath (Split-Path
$.PhysicalName -Leaf)

SrelocateFilelList += New-Object Microsoft.SglServer.
Management .Smo.RelocateFile ($.LogicalName, S$relocateFile)

#restore fg2
#dont need partial anymore

Restore-SglDatabase
-ReplaceDatabase
-ServerInstance $instanceName
-Database S$restoreddbname
-BackupFile $fg2backup
-RelocateFile SrelocateFilelList
-NoRecovery

345

Backup and Restore

#restore transaction log backup
#this will restore using with recovery

Restore-SglDatabase
-ReplaceDatabase
-ServerInstance $instanceName
-Database S$restoreddbname
-BackupFile S$txnbackup

Online piecemeal restore is an Enterprise feature available starting from SQL Server 2005.
This type of restore, also referred to as partial restore, allows you to stage your restores.
With each restore sequence, one or more filegroups are available online, leaving the rest
offline. The power of this feature is that as soon as your first filegroup is restored, the objects
you have in this filegroup already become accessible to your end users or applications.

The first thing you will need to do is line up your files. You will need to specify where the
PRIMARY filegroup backup, any user filegroups you want to restore, and the transaction log
backup files are. In our recipe, we are also restoring the database to a different instance, so
we will need to relocate our database files. For this reason, we must also specify what the
filegroup names are for the filegroups we are restoring.

#primary filegroup
Sprimaryfgbackup = "C:\Backup\StudentDB PRIMARY.bak"

#additional filegroup(s) to restore, and filegroup name
$fg2backup = "C:\Backup\StudentDB FG2.bak"
$fg2name = "Student FG2 data"

#transaction log backup
S$txnbackup = "C:\Backup\StudentDB TXN.bak"

Once we have the files lined up, we need to create an array that
contains the files we are relocating:

SrelocateFileList = @()

$smoRestore = New-Object Microsoft.SglServer.Management.Smo.Restore

$smoRestore.Devices.AddDevice (Sprimaryfgbackup , [Microsoft.SglServer.
Management . Smo.DeviceType] : :File)

SsmoRestore.ReadFileList ($Sserver) |
ForEach-Object ({

346

Chapter 6

SrelocateFile = Join-Path $SrelocatePath (Split-Path
$.PhysicalName -Leaf)

SrelocateFilelList += New-Object Microsoft.SglServer.
Management .Smo.RelocateFile ($.LogicalName, S$relocateFile)

}

We can then use our Restore-SglDatabase cmdlet to restore the primary filegroup first
with NORECOVERY. Note that when restoring the PRIMARY filegroup, you will need to specify
the option Partial:

#restore primary fg
#partial must be used if restoring primary fg
#needs to be only mdf and 1df

Restore-SglDatabase

-Partial

-ReplaceDatabase
-ServerInstance $instanceName
-Database S$restoreddbname
-BackupFile S$primaryfgbackup
-RelocateFile SrelocateFilelList
-NoRecovery

Next, for our user filegroups, we must still create an array that contains the specific filenames
of the filegroup(s) we are restoring.

SrelocateFileList = @()

#for the custom filegroup we want to restore, we want to
#relocate only that filegroup's datafiles
$smoRestore = New-Object Microsoft.SglServer.Management.Smo.Restore

$smoRestore.Devices.AddDevice ($fg2backup , [Microsoft.SglServer.
Management . Smo.DeviceType] : :File)

SsmoRestore.ReadFileList ($Sserver) |
ForEach-Object ({
if($.LogicalName -eq $fg2name)
{

SrelocateFile = Join-Path $SrelocatePath (Split-Path
$.PhysicalName -Leaf)

SrelocateFilelList += New-Object Microsoft.SglServer.
Management .Smo.RelocateFile ($.LogicalName, S$relocateFile)

}

347

Backup and Restore

If we add items in the array that pertain to filegroups that we are not restoring, we are going to
get an error like this:

Microsoft.SglServer.Management.Smo.SmoException: System.Data.SglClient.
SqglError: The operating system returned the error '5(Access is denied.)'
while attempting 'RestoreContainer::ValidateTargetForCreation' on ...
'c:\\Temp\\Student FGl data.ndf'

Once we have the array of relocated files, we can restore our user filegroup. Note that for this
statement, we no longer need to specify the option Partial:

#irestore fg2
#dont need partial anymore

Restore-SglDatabase
-ReplaceDatabase
-ServerInstance $instanceName
-Database S$restoreddbname
-BackupFile $fg2backup
-RelocateFile $relocateFileList
-NoRecovery

Lastly, we need to restore the transaction logfile(s). If there are multiple transaction logfiles,
each transaction logfile before the final transaction logfile needs to be restored with
NORECOVERY. The last transaction logfile can be restored using WITH RECOVERY.

Restore-SglDatabase
-ReplaceDatabase
-ServerInstance $instanceName
-Database S$restoreddbname
-BackupFile $txnbackup

348

Chapter 6

What you should see after you restore this sequence is shown in the following screenshot:

= | StudentDB

[Database Diagrams

= [Tables

[System Tables

[FileTables
=1 dbo.Student_FG1
=1 dbo.Student_FG2
=1 dbo.Student_PRIMARY
=1 dbo,Student_TXM

HEEEE

It is a little bit deceiving because it looks like the whole database is already available and
accessible. However, since we only restored FG2, only objects in FG2 are truly accessible.
If you try to access any of the objects that reside in the unrestored filegroup, you will get
an error similar to this:

Msg 8653, Level 16, State 1, Line 2

The query processor is unable to produce a plan for the table or
view 'Student FGl' because the table resides in a filegroup which
is not online.

To restore the rest of your filegroups, you can use the same steps as described previously
until the final filegroup is restored. Remember to always restore the filegroup, and then the
transaction log backup. Lather, rinse, and repeat.

» The Creating a filegroup backup recipe
» Learn more about performing piecemeal restores:

http://msdn.microsoft.com/en-us/library/msl177425 (v=sgql.110) .
aspx

349

http://msdn.microsoft.com/en-us/library/ms177425(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms177425(v=sql.110).aspx

SQL Server
Development

In this chapter, we will cover:

» Inserting XML into SQL Server

» Extracting XML from SQL Server

» Creating an RSS feed from SQL Server content
» Applying XSL to an RSS feed

» Storing binary data into SQL Server

» Extracting binary data from SQL Server

» Creating a new assembly

» Listing user-defined assemblies

» Extracting user-defined assemblies

Introduction

The last few versions of SQL Server have seen immense enhancements and support to
different components that were traditionally not supported natively in databases, such as XML
and Common Language Runtime (CLR) assemblies. This chapter explores how you can use
PowerShell to simplify and automate some of the tasks you need to do with these items.

To do the exercises in this chapter:

4. Create a sample database named SampleDB, and use it for the tasks in this chapter:
CREATE DATABASE SampleDB

SQL Server Development

5. Download the files for this chapter from the Packt website, and save them to your
local drive. You will find three folders in your downloaded package:

a. BLOB Files
b. CLR Files
C. XML Files

Inserting XML into SQL Server

In this recipe, we will insert the content of some XML files into a SQL Server table that has
XML columns.

Getting ready

We will create a sample table that we can use for this recipe. Run the following in SQL Server
Management Studio to create a table named SampleXML that has an XML field:

USE SampleDB

GO

IF OBJECT ID('SampleXML') IS NOT NULL
DROP TABLE SampleXML

GO

CREATE TABLE SampleXML

(
ID INT IDENTITY (1, 1) NOT NULL PRIMARY KEY,
FileName VARCHAR (200),
InsertedDate DATETIME DEFAULT GETDATE(),
InsertedBy VARCHAR(100) DEFAULT SUSER_SNAME(),
XMLStuff XML,
FileExtension VARCHAR (50)

)

Create a directory called C:\XML Files\ and copy the sample XML files that come with the
book scripts. Alternatively, you can use your own directory and XML files.

How to do it...

These are the steps to insert the contents of XML files into SQL Server:

1. Open the PowerShell console application by going to Start | Accessories |
Windows PowerShell | Windows PowerShell ISE.

352

Chapter 7

2. Import the SQLPS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

SVerbosePreference = "Continue"

#define variables for directory, instance, database

$xmlDirectory = "C:\XML Files\"
SinstanceName = "KERRIGAN"
SdatabaseName = "SampleDB"

#get all XML files from your XML directory
Get-ChildItem $xmlDirectory -Filter "*.xml" |
ForEach-Object ({

#need to replace some illegal XML characters
Write-Verbose "Importing $($_.FullName) "

#we need to escape single quotes

#because we are passing the

#XML content to a T-SQL statement

[string] $xml = (Get-Content $_ .FullName) -replace "'", "''v

Squery = @"

INSERT INTO SampleXML

(FileName, XMLStuff,FileExtension)
VALUES ('$($_.Name) ', '$xml','.xml"')
"@

Invoke-Sglcmd -ServerInstance $instanceName -Database
SdatabaseName -Query Squery

SVerbosePreference = "SilentlyContinue"

When you are done, your result should look similar to this:

VERBOSE : Importing C:\XML Files\books.xml
VERBOSE: Importing C:“\XML Files\sglmusings_rss.xml

353

SQL Server Development

Inserting the contents of an XML file into a SQL Server XML column is easily done with
a combination of T-SQL and PowerShell.

PowerShell can perform file-related functions, while T-SQL can do INSERT statements
more effectively.

The first step in this recipe is to loop through a set of XML files:
Get-ChildItem $xmlDirectory -Filter "*.xml"

We then pipe this to a Foreach-0bject cmdlet that enables each file to be inserted into
the table. Inside the Foreach-0Object cmdlet, we display which file we are importing first:

#need to replace some illegal XML characters
Write-Verbose "Importing $($.FullName) ..."

We then extract the content of each XML file. Because we will be passing the content as text
back to the server, we need to make sure we escape all single quotes. Otherwise the string
we are inserting will be erroneously terminated.

[string] $xml = (Get-Content $.FullName) -replace "'", n"r':'m

Once the XML content is saved into a variable, we can compose an INSERT statement to
insert into our table that has the XML column. Note that our INSERT statement is using a
here-string variable.

Squery = @"

INSERT INTO SampleXML

(FileName, XMLStuff,FileExtension)
VALUES ('$($_.Name) ', 'S$xml','.xml"')
"@

4 Remember a here-string variable allows you to more easily
create variables containing multi-line text. The text needs to start
"~ with @" atthe end of a line, and end with "@ in a line by itself.

To perform the insert, we can use the Invoke-SglCmd cmdlet and pass our INSERT query:

Invoke-Sglcmd -ServerInstance $instanceName -Database
SdatabaseName -Query $Squery

See also

» The Extracting XML from SQL Server recipe

» Learn more about SQL Server XML support from MSDN:
http://msdn.microsoft.com/en-us/library/msl187339.aspx

Chapter 7

Extracting XML from SQL Server

In this recipe, we will extract the XML content from SQL Server and save each record back to
individual files in the filesystem.

Getting ready

For this recipe, we will use the table we created in the previous recipe, Inserting XML into SQL
Server, to extract files. Feel free to use your own tables that have XML columns; just ensure
you change the table name in the script.

How to do it...

These are the steps to extract XML from SQL Server:

1.

Open the PowerShell console application by going to Start | Accessories |
Windows PowerShell | Windows PowerShell ISE.

Import the SQLPS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

Add the following script and run:

SVerbosePreference = "Continue"
SinstanceName = "KERRIGAN"
SdatabaseName = "SampleDB"
$foldername = "C:\XML Files\"

#we will save all retrieved files in a new folder

Snewchildfolder = "Retrieved XML $ (Get-Date -format 'yyyy-MMM-dd-
hhmmtt') "

snewfolder = Join-Path -Path "$($foldername)" -ChildPath
snewchildfolder

#If the path exists, will error silently and continue
New-Item -ItemType directory -Path $newfolder -ErrorAction
SilentlyContinue

#query to get XML content from database
Squery = @"

SELECT FileName, XMLStuff

FROM SampleXML

WHERE XMLStuff IS NOT NULL

"@

355

SQL Server Development

Invoke-Sglcmd -ServerInstance $instanceName -Database
$databaseName -Query $query -MaxCharLength 99999999 |

ForEach-Object ({
Write-Verbose "Retrieving $($_ .FileName) ..."
[xml] $xml = $.XmlStuff

$xml.Save ((Join-Path -Path S$newfolder -ChildPath
"$($_.FileName) "))

}

explorer S$newfolder
SVerbosePreference = "SilentlyContinue"

When you are done, go to your folder and you will see something similar to this:

= Local Disk (C:) = XML Files = Retrieved XML 2012-Apr-29-0432PM

y * Sharewith + Mew folder

Mame * Date modified
|£| books, xml 4292012 432 PM
|| sglmusings_rss. xml 4292012 432 PM

SQL Server has great support for querying and manipulating XML stored in SQL Server
tables, but needs external support if these files need to be extracted and saved back to
the filesystem. PowerShell can definitely help in this area.

We first create a new timestamped folder where we can store our retrieved XML files. This will
help us keep track of which files were downloaded at any specific time. We use the New-Item
cmdlet to create this new folder. If the folder already exists, no error will be displayed since we

specified the parameter -ErrorAction SilentlyContinue.

#we will save all retrieved files in a new folder

Snewchildfolder = "Retrieved XML $(Get-Date -format 'yyyy-MMM-dd-
hhmmtt') "

Snewfolder = Join-Path -Path "$($foldername)" -ChildPath
Snewchildfolder

#If the path exists, will error silently and continue

New-Item -ItemType directory -Path $newfolder -ErrorAction
SilentlyContinue

356

Chapter 7

We then construct our T-SQL statement to retrieve the XML data from our table.

Squery = @"

SELECT FileName, XMLStuff
FROM SampleXML

WHERE XMLStuff IS NOT NULL
"@

We can pass this to the Invoke-Sglcmd cmdlet to retrieve all our XML records. We also
have to specify a big number for the variable MaxCharLength, which defines the maximum
number of characters returned for columns, because the content of the XML files we are
retrieving will be big. By default, the MaxCharLength value is 4000.

Invoke-Sglcmd -ServerInstance $instanceName -Database $databaseName
-Query $query -MaxCharLength 99999999 |
ForEach-Object ({

Write-Verbose "Retrieving $($_.FileName) ..."

[xml] $xml = $_ .XmlStuff

$xml.Save ((Join-Path -Path $newfolder -ChildPath "$($_.FileName)"))

}

For each record returned in our query result, we save the content back to a strongly typed XML
variable, by putting [xm1] right beside our $xml variable.

ForEach-Object ({
Write-Verbose "Retrieving $($_.FileName) ..."
[xml] $xml = § .XmlStuff
$xml.Save ((Join-Path -Path $newfolder -ChildPath "$($_.FileName)"))

The XML variable, because it is an XML object, will have inherited a Save method that allows
us to save the content back to the filesystem.

ForEach-Object ({
Write-Verbose "Retrieving $($_.FileName) ..."
[xml] $xml = $_ .XmlStuff
$xml.Save ((Join-Path -Path $newfolder -ChildPath "$($_.FileName)"))

» The Inserting XML into SQL Server recipe

357

SQL Server Development

Creating an RSS feed from SQL Server

content

In this recipe, we will create an RSS feed from SQL Server content.

Getting ready

For this task, we will use a trivial query to populate our RSS feed. We will just list our database
list from sys.databases, and use that as fictional content for our RSS file.

How to do it...

These are the steps to create an RSS feed using T-SQL and PowerShell.
1. Open the PowerShell console application by going to Start | Accessories |
Windows PowerShell | Windows PowerShell ISE.
2. Import the SQLPS module as follows:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
3. Add the following script and run:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

SinstanceName = "KERRIGAN"

SdatabaseName = "SampleDB"

Stimestamp = Get-Date -Format "yyyy-MMM-dd-hhmmtt"
S$rssFileName = "C:\XML Files\rss_Stimestamp.xml"

#values to be used for RSS

SrssTitle = "QueryWorks Latest News"
SrssLink = "http://www.queryworks.ca/rss.xml"
SrssDescription = "What's new in the world of QueryWorks™"

#use r as date formatter to get

#date in RFCl1l23Pattern

SrssDate = (Get-Date -Format r)

$rssManagingEditor = "infoequeryworks.ca"
SrssGenerator = "SQL Server 2012 XML and PowerShell"
SrssDocs = "http://www.queryworks.ca/rss.xml"

358

Chapter 7

Squery = @"
DECLARE @rssbody XML
SET @rssbody = (SELECT

name AS 'title' ,

collation name AS 'description' ,

'false' AS 'guid/@isPermaLink' ,
'http://www.queryworks.ca/?p=" +

CAST (database id AS VARCHAR(5)) AS 'guid'

FROM
sys.databases
FOR XML PATH('item') , TYPE)
SELECT @rssbody
"@
SrssFromSQL = Invoke-Sglcmd -ServerInstance $instanceName

-Database S$databaseName -Query S$query

#extract the RSS from the SQL Server result
[string] $rssBody = $rssFromSQL.Columnl.ToString()

#icreate the final RSS

Srsstext = @"

<?xml version="1.0" encoding="UTF-8" ?>

<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">

<channels>

<title><! [CDATA[SrssTitle]]l></title>

<atom:1link href="http://www.queryworks.ca/rss.xml" rel="gself"

type="application/rss+xml" />
<link>$rssLink</link>
<description><! [CDATA [SrssDescription]] ></description>
<pubDate>S$rssDate</pubDate>
<lastBuildDates>$rssDate</lastBuildDate>
<managingEditor>$rssManagingEditor</managingEditors>
<generator>$rssGenerator</generator>
<docs>$rssDocs</docs>
SrssBody

</channel>

</rss>

"@

[xml] Srss = Srsstext

Srss.Save (SrssFileName)

359

SQL Server Development

When the script has finished executing, open the RSS file. The content of the file
should look similar to this:

rss_2012-Apr-29-1002AM.xml >

<?xml version="1.8" encoding="UTF-8"?>
—l<rss version="2.8" wmlns:atom="http:/ www.w3.org/2085/Atom™>
- <channel>
<titlex<![CDATA[Querylorks Latest News]]»</title>
<gtom:link href="http://www.queryworks.ca/rss.xml™ rel="self" type="applica
<linkrhttp://www.queryworks.ca/rss.xml</link>
<description><! [{DATA[What's new in the world of QuerylWorks]]></description
<pubDate>Sun, 29 Apr 2812 18:82:48 GMT</pubDate:
<lastBuildDate>Sun, 29 Apr 2812 18:82:48 GMT</lastBuildDate>
<managingEditor>info@iqueryworks.ca</managingEditor:
<generator>SQL Server 2812 XML and PowerShell</generator:
<docsshttp:/ www. queryworks.ca/rss.xml</docs>
- <item:
<titlermaster</title:
<description»SQL_Latinl_General CP1_CI_AS</description:
<guid isPermaLink="false">http://www.queryworks.ca/?p=1</guid>
</itemy|
- <item>
<titlextempdb</title>
<description>SQL_Latinl_General CP1_CI_AS</description:
<guid isPermalink="false">http:/ www.queryworks.ca/?p=2</guid>
</item>
- <item>
<titlermodel</titlex
<description»SQL_Latinl_General CP1_CI_AS</description:
<guid isPermaLink="false">http://www.queryworks.ca/?p=3</guid>
</ite

To validate, www.w3 . org has an RSS feed validator at http://validator.w3.org/feed/
check.cgi. Use the tab Validate by Direct Input, and copy the contents of the file into the
textarea. Click on the Validate button. If validated, you should see a message like this:

Congratulations!

VALID
Mm This is a valid RSS feed.

SQL Server has embraced support for XML since version 2005. While creating the content
for RSS feeds is doable using T-SQL in SQL Server, there are still some challenges with
composing the RSS file. For example, the RSS file should have the following header:

<?xml version="1.0" encoding="UTF-8" ?>

360

Chapter 7

Although adding this line at the beginning of the content is doable in SQL Server, it is not
very straightforward. It will take a few CAST functions to get your RSS feed content properly
formatted. When you are done with the formatting, you will still need to use another means
or tool to save this back to an XML file.

Combining T-SQL with PowerShell allows you to accomplish creating the RSS feed file with ease.
The first thing we do is define a timestamped filename:

Stimestamp = Get-Date -Format "yyyy-MMM-dd-hhmmtt"
SrssFileName = "C:\XML Files\rss_Stimestamp.xml"

We then have to define the parameters we want to use to populate our RSS header. These
include the title, 1ink, description, date, managingEditor, generator, and
docs variables. We will insert these variables later in the actual RSS feed string:

#values to be used for for RSS

SrssTitle = "QueryWorks Latest News"
SrssLink = "http://www.queryworks.ca/rss.xml"
SrssDescription = "What's new in the world of QueryWorks"

#use r as date formatter to get

#date in RFCl123Pattern

SrssDate = (Get-Date -Format r)

S$rssManagingEditor = "infoequeryworks.ca"
SrssGenerator = "SQL Server 2012 XML and PowerShell"
$SrssDocs = "http://www.queryworks.ca/rss.xml"

To retrieve data from our SQL Server table, we define a here-string query. Note here, to get the
content in the XML format that we want, we use the FOR XML PATH with our query:

Squery = @"
DECLARE @rssbody XML
SET @rssbody = (SELECT

name AS 'title' ,
collation name AS 'description'
'false' AS 'guid/@isPermalink' ,
'http://www.queryworks.ca/?p=" +
CAST (database_id AS VARCHAR(5)) AS 'guid!'
FROM

sys.databases

FOR XML PATH('item')

’

, TYPE)
SELECT @rssbody
n

@

361

SQL Server Development

This query will give you a result similar to this:

<item:

<titlermaster</titlex

<description»SQL_Latinl_General CP1_CI_AS</description:

<guid isPermalLink="false">»http://www.queryworks.ca/?p=1</guids>
<fitem:
<itemz>

<titlestempdbe/titles

<description>SQL Latinl General CP1 CI AS</descriptionz

<guid isPermalink="false">http://www.queryworks.ca/?p=2</guids>
</item:

When we execute the query, we can use the Invoke-Sglcmd cmdlet, and capture the result
using another PowerShell variable.

SrssFromSQL = Invoke-Sglcmd -ServerInstance $instanceName -Database
SdatabaseName -Query S$query

Remember, though, that our result from our Invoke-Sglcmd cmdlet is still a table, so we
still need to extract just the XML content from the result. We do this by extracting what's been
returned in Columnl (that is, the first column of the result), and saving this as a string:

#extract the RSS from the SQL Server result
[string] $rssBody = $rssFromSQL.Columnl.ToString()

Once we have all the information, we can formulate the RSS file. Note that we are using a
here-string variable as the main template, and each tag is populated by the values we
set for our RSS-related variables. These are the variables (shown in bold) embedded in the
here-string query below:

#icreate the final RSS

Srsstext = @"

<?xml version="1.0" encoding="UTF-8" ?>

<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom" >

<channels>

<title><! [CDATA[$rssTitle]l]></title>

<atom:link href="http://www.queryworks.ca/rss.xml" rel="gelf"

type="application/rss+xml" />
<link>$rssLink</link>
<description><! [CDATA [$rssDescriptionl]] ></description>
<pubDate>$rssDate</pubDate>
<lastBuildDate>$rssDate</lastBuildDate>
<managingEditor>$rssManagingEditor</managingEditor>
<generator>$rssGenerator</generator>
<docs>$rssDocs</docs>
$rssBody

</channel>

362

Chapter 7

</rss>
ll@

To validate and create the file, we need to create a strongly typed XML variable. We are hitting two
birds with one stone this way. This can check for well-formed XML. If the XML is not well formed,
we will get an error when we try to assign our content to the XML variable.

#this can validate the RSS file
[xml] $rss = Srsstext

The XML object also comes with a Save method that allows us to save the content to a file
on a disk.

Srss.Save (SrssFileName)

There's more...

RSS stands for Really Simple Syndication. It allows items such as blog entries and news
items to be syndicated or published automatically, and consumed by RSS readers from
different devices. An RSS feed is nothing more than a specific-formatted XML file that
contains specific information such as author, title, description, and the like.

Learn more about RSS feeds and their variations from http://cyber.law.harvard.edu/
rss/rss.html and http://www.rss-specifications.com/rss-specifications.
htm.

On the SQL Server side, to learn more about creating XML documents from your records,
read up on the FOR XML clause from http://msdn.microsoft.com/en-us/library/
ms190922.aspx.

See also

» The Applying XSL to an RSS feed recipe

Applying XSL to an RSS feed

In this recipe, we will create a styled HTML file based on an existing RSS feed and
XSL (stylesheet).

Getting ready

The files needed for this recipe are included in the downloadable book scripts from Packt.
Once downloaded, copy the XML Files\RSS folder to your local C: \ directory. This folder
will have two files: one sample RSS feed (sample rss.xml)and one sample XSL file
(rss_style.xsl).

363

SQL Server Development

How to do it...

These are the steps for styling an RSS feed:

1. Open the PowerShell console application by going to Start | Accessories |
Windows PowerShell | Windows PowerShell ISE.

2. Add the following script and run:

$xsl = "C:\XML Files\RSS\rss_style.xsl"
Srss = "C:\XML Files\RSS\sample rss.xml"
$styled rss = "C:\XML Files\RSS\sample result.html"

$xslt = New-Object System.Xml.Xsl.XslCompiledTransform
$xslt.Load ($xsl)
$xslt.Transform($rss, $styled rss)

#load the resulting styled html

#in Internet Explorer

Set-Alias ie "Senv:programfiles\Internet Explorer\iexplore.exe"
ie $styled rss

When done, an Internet Explorer browser will open and show a page similar to this:

(& C: WML Files\RSS\sample _result.html | | é

QueryWorks Latest News
What's new in the world of QueryWorks

master
SQL_Latinl_General_CP1_CI_AS
tempdb
SQL_Latinl_General_CP1_CI_AS
model
SQL_Latinl_General_CP1_CI_AS
msdb
SQL_Latinl_General_CP1_CI_AS
SampleDB
SQL_Latinl_General_CP1_CI_AS
AdventureWorks2008R2

XSL stands for Extensible Stylesheet Language. It is a stylesheet, similar to its cousin
Cascading Style Sheets (CSS), which defines how an XML document can be styled and
potentially transformed.

364

Chapter 7

Although this recipe may not be directly related to SQL Server, knowing how to apply this may
have some benefits to the SQL Server professional.

To style our RSS feed, we will first create some variables that contain our .xs1 file and our
.xml file (or the RSS feed file). For our recipe, we will style the RSS to produce an HTML file,
so we will create a variable to reference this new file as well:

$xsl = "C:\XML Files\RSS\rss_style.xsl"
$rss = "C:\XML Files\RSS\sample_ rss.xml"
$styled rss = "C:\XML Files\RSS\sample result.html"

The content of our XSL file looks like this:

<7xml version="1.0" encoding="IS0-8859-1"2> 3
<x3l:3tylesheet version="1.0" xmlns:xsl="http:/ wWW.w3.0rq/1999/ 5L/ Transform™>
<x3l:template match="/ras">

<html>

<head>

Lo TR N)

1 oo

<3tyle type="text/c3s">

body |
= font-family: Verdana,"sans-serif";
g }
10 h2 a, hd a:link
11 {

%]

text-decoraticn:none;
color: #990000;

[
w

}

.channeldescrip

{
1 background-color: #FFCCE4;

}
</atyle>

[
1 o

oo

</head>
<body>

[%]

<div id="rasheader">

<h2>
<x3l:element name="a"> *-/

<xsl:attribute name="href">
<x3l:value-of select="channel/link" ;}(
</®3l:attribute>
<xsl:value-of select="channel/title™ /> (
</x3l:element>
</hi>

o

Ra R k3 RS R R RY RS RDORDO
=

oD o

[
I

<fdiv>

<div class="rasscontents"™ style="border-width:0; background-coclor:#4FFF; ma
<div class="channeldescrip”>
<h3>

[
I

A B

i
[#

[
||

<x3l:value-of select="channel/description” f}(

/3

It is important to show a sample section of the XSL to help map visually where the RSS items
are incorporated.

365

SQL Server Development

The styling of the XML with XSL is done using the .NET class Xs1CompiledTransform.
$xslt = New-Object System.Xml.Xsl.XslCompiledTransform

To transform our RSS feed, which is a simple XML file, into a styled HTML file, the XSL
(stylesheet) needs to be loaded using the L.oad method of the Xs1CompiledTransform
variable.

Sxslt.Load ($xsl)

The actual transformation and styling happens when the Transform method of the
XslCompiledTransform object is invoked, and passed with the XML content and
a handle (or variable) to the resulting HTML file.

$xslt.Transform($rss, $styled rss)

The last piece we added is just to display the resulting HTML file in Internet Explorer. We
create an alias for Internet Explorer using the Sset-Alias cmdlet, and use it to open our
resulting HTML file.

#load the resulting styled html

#in Internet Explorer

Set-Alias ie "Senv:programfiles\Internet Explorer\iexplore.exe"
ie $styled rss

» The Creating an RSS Feed from SQL Server content recipe
» To learn more about XSL, visit the www . w3 . org official XSL documentation:
http://www.w3.org/Style/XSL/WhatIsXSL.html

» In addition, check out the MSDN documentation on the Xs1CompiledTransform
NET class:

http://msdn.microsoft.com/en-us/library/system.xml.xsl.
xslcompiledtransform.aspx

Storing binary data into SQL Server

In this recipe, we will store some binary data, including some images, a PDF, and a Word
document, into SQL Server.

366

Chapter 7

Getting ready

Let's create a sample table we can use for this recipe. Run the following in SQL
Server Management Studio to create a table called Samp1eBLOB that has a BLOB, or
VARBINARY (MAX), field:

USE SampleDB

GO

IF OBJECT ID('SampleBLOB') IS NOT NULL
DROP TABLE SampleBLOB

GO

CREATE TABLE SampleBLOB

(
ID INT IDENTITY (1, 1) NOT NULL PRIMARY KEY,
FileName VARCHAR (200) |,
InsertedDate DATETIME DEFAULT GETDATE() ,
InsertedBy VARCHAR(100) DEFAULT SUSER_SNAME () ,
BLOBStuff VARBINARY (MAX) ,
FileExtension VARCHAR (50)

)

Create a directory called C:\BLOB Files\ and copy the sample BLOB files that come with
the book scripts, or use your own directory and BLOB files.

How to do it...

These are the steps to save binary data into SQL Server:
1. Open the PowerShell console application by going to Start | Accessories |
Windows PowerShell | Windows PowerShell ISE.
2. Import the SQL.PS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

SVerbosePreference = "Continue"
SinstanceName = "KERRIGAN"
SdatabaseName = "SampleDB"
$folderName = "C:\BLOB Files\"

367

SQL Server Development

#using PowerShell V2 style Where-Object syntax
Get-ChildItem $folderName |
Where-Object {$_ .PSIsContainer -eq $false} |
ForEach-Object ({

SblobFile = §

sfileExtension = $SblobFile.Extension

Write-Verbose "Importing file $($blobFile.FullName)..."

Squery = @"

INSERT INTO SampleBLOB

(FileName, FileExtension, BLOBStuff)

SELECT 'SblobFile', '$fileExtension’', *

FROM OPENROWSET (BULK N'S$folderName$blobFile', SINGLE BLOB) as
tmpImage

"@

Invoke-Sglcmd -ServerInstance $instanceName -Database
SdatabaseName -Query $Squery

Start-Sleep -Seconds 2

}

SVerbosePreference = "SilentlyContinue"

When you're done, you should see something similar to this:

VERBOSE: Importing file C:\BLOB Files\Hello sQLSaturday 114.docx...
VERBOSE : Importing file C:\BLOB Files\speakerevals.jpg...

VERBOSE : Importing file C:\BLOB Files‘\sqglsatl08.png...

VERBOSE : Importing file C:\BLOB Files\SSRS CheatSheet.pdf...

Inserting the contents of a binary file into a SQL Server table can be made easier with the
combination of T-SQL and PowerShell.

In this recipe we have a few files—a PDF, a Word document, and a few images—that we want
to store to SQL Server.

To start, we first need to define which folder we are importing, and to which instance and
which database we are importing from:

SinstanceName = "KERRIGAN"
SdatabaseName = "SampleDB"
$folderName = "C:\BLOB Files\"

368

Chapter 7

We then pipe a series of cmdlets to accomplish our task. First we use the Get-ChildItem
cmdlet to get all our files. In our recipe, we import all the files in C: \BLOB Files.

#using PowerShell V2 style Where-Object syntax
Get-ChildItem $folderName |
Where-Object {$.PSIsContainer -eq $false} |

We exclude folders by specifying Where-Object {$_.PSIsContainer -eq $false}.
Of course, you have an option of filtering by file extensions if you want. You can just add the
-Include parameter for Get -ChildItem and specify which extensions you want to import,
as such:

Get-ChildItem -Path "C:\BLOB Fileg*.*" -Include *.jpg, *.png

The Foreach-0Object cmdlet then takes each file we retrieve, and composes a T-SQL
statement that inserts the file into our Samp1eBLOB table. We use OPENROWSET to import
the contents of the binary file as a SINGLE_BLOB file.

$blobFile = $_
sfileExtension = $blobFile.Extension
Write-Verbose "Importing file $($SblobFile.FullName)..."

Squery = @"

INSERT INTO SampleBLOB

(FileName, FileExtension, BLOBStuff)

SELECT 'SblobFile', 'sfileExtension', *

FROM OPENROWSET (BULK N'S$folderName$SblobFile', SINGLE_BLOB) as tmpImage
"@

This T-SQL statement is then passed to the Invoke-Sglcmd cmdlet, which executes the
statement on our instance. We also sleep for 2 seconds to give the command some time
to complete.

Invoke-Sglcmd -ServerInstance $instanceName -Database $databaseName
-Query Squery
Start-Sleep -Seconds 2

Read more about the OPENROWSET method at http://msdn.microsoft.com/en-us/
library/ms190312.aspx.

See also

» The Extracting binary data from SQL Server recipe

369

SQL Server Development

Extracting binary data from SQL Server

In this recipe, we will extract binary content from SQL Server and save it back to individual
files in the filesystem.

Getting ready

For this recipe, we will use the table we created in the previous recipe, Inserting binary data
into SQL Server, to extract files. Feel free to use your own tables that have VARBINARY (MAX)
columns; just ensure you change the table name in the script.

In addition to our SampleBLOB table, we will create an empty table with a single
VARBINARY (MAX) table. We will use this for facilitating the creation of a format file
we need for exporting binary data out of SQL Server using bcp.

USE SampleDB

GO

IF OBJECT ID('EmptyBLOB') IS NOT NULL
DROP TABLE EmptyBLOB

GO

CREATE TABLE EmptyBLOB

(
BLOBStuff VARBINARY (MAX)

)

How to do it...

These are the steps to extract binary data from SQL Server.
1. Open the PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.
2. Import the SQLPS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. First we will create a bcp format file. Add the following script and run:

Stimestamp = Get-Date -Format "yyyy-MMM-dd-hhmmtt"

$emptyBLOB_tableName = "SampleDB.dbo.EmptyBLOB"
$formatFileName = "C:\BLOB Files\blobs$ (Stimestamp) .fmt"
Sfmtcecmd = "bcp T"SemptyBLOB tableName™" format nul -T -N -f
“rsformatfilename™" -S $insEanceName"

#icreate the format file
Invoke-Expression -Command $fmtcmd

370

Chapter 7

#now there is a problem, by default the format file
#will use 8 as prefix length for varbinary

#we need this to be zero, so we will replace
(Get-Content $formatFileName) |

ForEach-Object { $ -replace "8", "0" } |
Set-Content $formatFileName

After our format file is created, we will export our BLOB content from SQL Server to
files in our filesystem. Run the following script:

SdatabaseName = "SampleDB"

$folderName = "C:\BLOB Files\"

SnewFolderName = "Retrieved BLOB $timestamp"

SnewFolder = Join-Path -Path "$($foldername)" -ChildPath
snewfoldername

#If the path exists, will error silently and continue

New-Item -ItemType directory -Path $newfolder -ErrorAction
SilentlyContinue

Squery = @"

SELECT ID, FileName
FROM SampleBLOB

n

@

Invoke-Sglcmd -ServerInstance $instanceName -Database
$databaseName -Query $query |
ForEach-Object ({

S$item = $

Write-Verbose "Retrieving $($item.FileName) ..."

SnewFileName = Join-Path $newFolder S$item.FileName
SblobQuery = @"
SELECT BLOBStuff
FROM SampleBLOB
WHERE ID = $($item.ID)
"@
Scmd = "bcp “"SblobQuery " queryout “"SnewFileName " -S $server
-T -d $databaseName -f “"$formatFileName™""
Invoke-Expression $cmd

}

explorer S$newFolder
SVerbosePreference = "SilentlyContinue"

371

SQL Server Development

When you are done, your retrieved files should look like this:

Local Disk (C:) =~ BLOB Files -~ Retfrieved BLOB 2012-Apr-29-0443FM

* Sharewith + Mew folder

Mame = Date modified

] Hello SQLSaturday 114.docx 4/29/2012 4:43 FM
|=| speakerevals.jpg 4292012 443 PM
B sqlsat103.png 4292012 443 PM
%Ll 55RS CheatSheet.pdf 4/29/2012 4:43 PM

To retrieve a BLOB, or binary large object, from SQL Server and saving it back to the
filesystem, we utilize a combination of T-SQL and PowerShell cmdlets.

The most important part of retrieving binary data and save them back to a file format is
preserving the raw format and encoding. We our data using bcp with a format file. To help
us create this format file, we created a simple table in our prep section that has a single
VARBINARY (MAX) column.

To create the format file, we use the dynamically built bcp command that will create the
format file.

$fmtcmd = "bcp T"SemptyBLOB tableName™" format nul -T -N -f
“rSformatfilename™" -S $instanceName"

A fully composed command will look similar to:

bcp "SampleDB.dbo.EmptyBLOB" format nul -T -N -f "C:\BLOB Files\
blob2012-Apr-29-0443PM.fmt" -S KERRIGAN

The options we specified in our bcp are (based on Books Online):

Option Description

format nul -f Specifies the non-XML format file

-T Indicates a trusted connection

-N Specifies to perform bcp using native data types for
noncharacter data, and Unicode character data

372

Chapter 7

To create the file, we can use the Invoke-Expression command to execute the bep
command against the server.

Invoke-Expression -Command Sfmtemd

This will create a format file that contains:

11.0
1
1 SQLBINARY 8 0] nn 1 BLOBStuff nn

Unfortunately, the bcp command that creates the format file automatically assigned a prefix
length of 8 for our SQLBINARY data. This will create problems for our binary file because it
adds additional characters to our file, which can "corrupt" the file. We want to replace this
prefix length with zero (0), and we do it using this code:

(Get-Content $formatFileName) |
ForEach-Object { $ -replace "8", "0" } |
Set-Content $formatFileName

Once our format file is ready, we create our timestamped folder.

SnewFolderName = "Retrieved BLOB $timestamp"
SnewFolder = Join-Path -Path "$($foldername)" -ChildPath
Snewfoldername

#If the path exists, will error silently and continue

New-Item -ItemType directory -Path $newfolder -ErrorAction
SilentlyContinue

We then get all the records from our SampleBLOB table. We will first only get the ID and
FileName variables.

Squery = @"

SELECT ID, FileName
FROM SampleBLOB

n

@

Invoke-Sglcmd -ServerInstance $SinstanceName -Database $SdatabaseName
-Query Squery |

For each record we retrieve that contains the ID and FileName variables, we query SQL Server
again, but this time for the binary content. We use this query in another bcp command we are
constructing. This becp command uses the format file we created in the previous section. We
pass this bcp command again to the Invoke-Expression cmdlet to create the binary file

in the filesystem.

373

SQL Server Development

ForEach-Object ({

S$item = $

Write-Verbose "Retrieving $($item.FileName) ..."
SnewFileName = Join-Path $newFolder S$item.FileName
SblobQuery = @"
SELECT BLOBStuff
FROM SampleBLOB
WHERE ID = $($item.ID)

II@
Scmd = "bcp “"SblobQuery " queryout ~"SnewFileName " -S $server -T -d
SdatabaseName -f “"$SformatFileName ™ ""

Invoke-Expression $cmd

There's more...

I

Read more about bcp:

http://msdn.microsoft.com/en-us/library/ms162802.aspx

See also

» The Storing binary data into SQL Server recipe

Creating a new assembly

In this recipe, we will create a new user-defined assembly.

Getting ready

Create a folder named C: \CLR Files and copy the QueryWorksCLR.d11 file that comes
with the book's sample files into this folder.

We will load this to the SampleDB database. Feel free to use a database accessible to you;
just ensure you replace the database name in the script.

How to do it...

These are the steps to create a new assembly in SQL Server:

1. Open the PowerShell console application by going to Start | Accessories |
Windows PowerShell | Windows PowerShell ISE.

Chapter 7

Import the SQLPS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

Add the following script and run:

$instanceName = "KERRIGAN"

SdatabaseName = "SampleDB"

SassemblyName = "QueryWorksCLR"

SassemblyFile = "C:\CLR Files\QueryWorksCLR.d1l1l"

#this is for SAFE assemblies only
Squery = @"

CREATE ASSEMBLY S$SassemblyName
FROM 'S$assemblyFile'

WITH PERMISSION_ SET = SAFE

"@

Invoke-Sglcmd -ServerInstance $instanceName -Database
SdatabaseName -Query Squery

When you are done, open SQL Server Management Studio. Go to the database and
open Programmability | Assemblies. Check that the assembly has been created as
shown in the following screenshot:

= | J SampleDB
[Database Diagrams
[Tables
L3 Views
[Synonyms
= 3 Programmability
[Stored Procedures
El [Functions
[Table-valued Functions
3 Scalar-valued Functions
[Aggregate Functions
1 System Functions
[Database Triggers
=RIE A =semblies

+ 1 Microsoft.SglServer, Type
+23 QueryWorksCLR A)

375

SQL Server Development

Starting with version 2005, SQL Server has supported integration with the Common Language
Runtime (CLR). This means that you can create .NET code in your language of preference,
compile it into DLL (Dynamic Linked Library) files, and create these as SQL Server database
objects called assemblies.

Creating an assembly in SQL Server can be straightforward. In this recipe, we looked at the
simplest case, where we create an assembly with SAFE access.

To create the assembly, we need to specify where the DLL is located, and pass it to a CREATE
ASSEMBLY T-SQL statement:

SassemblyFile = "C:\CLR Files\QueryWorksCLR.d11l"

#this is for SAFE assemblies only
Squery = @"

CREATE ASSEMBLY S$SassemblyName
FROM 'S$assemblyFile'

WITH PERMISSION SET = SAFE

"@

Once the parameters are defined, we simply use the Invoke-Sglcmd cmdlet to create the
assembly.

Invoke-Sglcmd -ServerInstance S$instanceName -Database $databaseName
-Query Squery

Note that in SQL Server, an assembly might be successfully created and database objects can
be created from it (for example, SQLCLR functions and stored procedures), but these will not
be usable until SQLCLR integration has been enabled in your instance. This can be done using
the T-SQL stored procedure sp_configure, or using PowerShell.

To enable SQLCLR using T-SQL, we can use:

EXEC sp configure 'show advanced options', 1
GO

RECONFIGURE

GO

EXEC sp configure 'clr enabled',6 1

GO

RECONFIGURE

GO

376

Chapter 7

To do the same thing using PowerShell, we can use the following snippet after we create the
$server SMO object:

$server.Configuration.IsSglClrEnabled.ConfigValue = 1
$Sserver.Alter ()

CLRs can be very powerful components within a SQL Server environment, thus there needs to
be control as to what is allowed and not allowed to do. A lot of this can be controlled through
Code Access Security (CAS). There are three security levels, and simply put, these are the
differences between them:

Permission Setting Description

SAFE Restricted to internal computation, and
local SQL Server access

Cannot access external resources such
as files, folders, and so on

EXTERNAL_ ACCESS Allows external access to files, registry,
networks, and so on
By default executes as the SQL Server
service account

UNSAFE Least restrictive

Can potentially do anything CLRs can do

We have only covered how to deploy SAFE assemblies. EXTERNAL ACCESS and UNSAFE
can be a bit more complicated, and will require creating certificates, logins, and symmetric/
asymmetric keys.

Check out the section on Creating EXTERNAL ACCESS and UNSAFE
Assemblies from the MSDN article CLR Integration Code Access

Security: http://msdn.microsoft.com/en-us/library/
ms345101.aspx.

Note that this article strongly encourages not to set the TRUSTWORTHY
property of your database to ON.

» The Listing user-defined assemblies recipe

» The Extracting user-defined assemblies recipe

377

SQL Server Development

Listing user-defined assemblies

In this recipe, we will list the user-defined assemblies in a SQL Server database.

Getting ready

We can use the sampleDB database that we used in the previous recipe, or you can substitute
this with any database that is accessible to you that has some user-defined assemblies.

How to do it...

These are the steps to list user-defined assemblies:

1. Open the PowerShell console application by going to Start | Accessories |
Windows PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Add the following script and run:

SinstanceName = "KERRIGAN"
$server = New-Object ~

-TypeName Microsoft.SglServer.Management.Smo.Server °
-ArgumentList $instanceName

SdatabaseName = "SampleDB"

Sdatabase = $server.Databases[$databaseName]

#list assemblies except system assemblies
#using PowerShell V3 syntax
$database.Assemblies | Where-Object IsSystemObject -eq $false

Listing user-defined assemblies is a straightforward task.
After importing the SQL.PS module, we create a server handle and database handle:

SinstanceName = "KERRIGAN"
$server = New-Object ~

-TypeName Microsoft.SglServer.Management.Smo.Server °
-ArgumentList $instanceName

SdatabaseName = "SampleDB"

Sdatabase = $server.Databases [$databaseName]

378

Chapter 7

An assembly is a database-level object, which means we can access assemblies through our
database variable. We also want to filter out any system assemblies. Note we are using the
PowerShell V3 Where-0Object syntax.

$database.Assemblies | Where-Object IsSystemObject -eq $false

To do this using the PowerShell V2 where-0bject syntax, we need to add the curly braces
anduse s_.

$database.Assemblies | Where-Object {$.IsSystemObject -eq $false}

There's more...

Learn more about SQLCLR assemblies from MSDN:

http://msdn.microsoft.com/en-us/library/ms254498 (v=vs.110) .aspx

See also

» The Extracting user-defined assemblies recipe

Extracting user-defined assemblies

In this recipe, we will extract user-defined assemblies and resave these back to the filesystem
as DLLs.

Getting ready

We can use the SampleDB database that we used in the previous recipe, or you can substitute
this with any database that is accessible to you that has some user-defined assembilies.

How to do it...

These are the steps to extract user-defined assemblies:

1. Open the PowerShell console application by going to Start | Accessories |
Windows PowerShell | Windows PowerShell ISE.
2. Import the SQLPS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

379

SQL Server Development

3.

380

First, we will create a bcp format file. Add the following script and run:

SVerbosePreference = "Continue"
SinstanceName = "KERRIGAN"

Stimestamp = Get-Date -Format "yyyy-MMM-dd-hhmmtt"

$emptyBLOB_tableName = "SampleDB.dbo.EmptyBLOB"
S$formatFileName = "C:\CLR Files\clr$ (Stimestamp) .fmt"
$fmtemd = "bcp T"$emptyBLOB tableName™" format nul -T -N

“rsformatFileName™" -S $instanceName"

#create the format file
Invoke-Expression -Command $fmtcmd

#now there is a problem, by default the format file
#will use 8 as prefix length for varbinary

#we need this to be zero, so we will replace
(Get-Content $formatFileName) |

ForEach-Object { $ -replace "8", "0" } |
Set-Content $formatFileName

Add the following script and run:

SdatabaseName = "SampleDB"

$folderName = "C:\CLR Files\"

SnewFolderName = "Retrieved CLR S$timestamp"

SnewFolder = Join-Path -Path "$($Sfoldername)" -ChildPath
snewfoldername

#If the path exists, will error silently and continue

New-Item -ItemType directory -Path $newfolder -ErrorAction

SilentlyContinue

#get all user defined assemblies
Squery = @"
SELECT

af.file id AS ID,

a.name + '.dll' AS FileName

FROM

sys.assembly files af

INNER JOIN sys.assemblies a

ON af.assembly id = a.assembly id
WHERE

a.is user defined =1
"@

Chapter 7

Invoke-Sglcmd -ServerInstance $instanceName -Database
$databaseName -Query $query |
ForEach-Object ({
S$item = $
Write-Verbose "Retrieving $($item.FileName) ..."

SnewFileName = Join-Path $newFolder S$item.FileName
SblobQuery = @"

SELECT
af.content
FROM
sys.assembly files af
WHERE
af.file id = $($item.ID)
"@
Scmd = "bcp “"SblobQuery " queryout T"SnewFileName " -S
SinstanceName -T -d $databaseName -f “"$formatFileName™""

Invoke-Expression $cmd

}

explorer S$newFolder
SVerbosePreference = "SilentlyContinue"

Once done, you can check out the file you generated. Your extracted file(s) will look
similar to this:

Local Disk (C:) = CLR Files ~ Retfrieved CLR 2012-Apr-29-0604FM

* Sharewith + Mew folder

Mame = Date modified

|| QueryWorksCLR..dI 4292012 6:04 FM

When we deploy SQLCLR assemblies, the definition of each assembly is saved to the target
database. There may be times you want to extract these back to their DLL (Dynamic Link
Library) binary forms. Retrieving and saving the DLL back into the file system is similar to
retrieving and saving BLOB data back into the filesystem.

The first thing we do is to create a format file.

& See recipe Extracting binary data from SQL Server for details on
s creating the format file for BLOB retrieval.

381

SQL Server Development

Once we have the format file, we create a timestamped folder where we will store our retrieved
DLLs. This will help us keep track of what we extracted, and when:

$folderName = "C:\CLR Files\"

SnewFolderName = "Retrieved CLR S$timestamp"

SnewFolder = Join-Path -Path "$($foldername)" -ChildPath
snewfoldername

#If the path exists, will error silently and continue
New-Item -ItemType directory -Path $newfolder -ErrorAction
SilentlyContinue

We construct a T-SQL statement to retrieve all user-defined assemblies in our target database.
We can get the definition of the assemblies from sys.assembly files. To get only user-
defined assemblies, we must filter sys.assembly for is user defined = 1.If we do not
filter, we may potentially get other files that were deployed with this assembly, such as debug
files, especially when the assembly is deployed from SQL Server Data Tools. Alternatively, if you
want to export only a selection, you can include a filter in your SELECT statement.

#get all user defined assemblies
Squery = @"
SELECT

af.file id AS ID,

a.name + '.dll' AS FileName

FROM

sys.assembly files af

INNER JOIN sys.assemblies a

ON af.assembly id = a.assembly id
WHERE

a.is user defined =1
"@

We then pass this T-SQL statement to the Invoke-Sglcmd cmdlet:

Invoke-Sglcmd -ServerInstance $instanceName -Database $databaseName
-Query Squery |

For each record returned to us, we then compose another query that will retrieve the binary
contents of the current DLL file from sys.assembly files by passingits file id, and
save this back to the filesystem using bcp and the format file that we created at the beginning
of the recipe.

ForEach-Object ({
Sitem = $_
Write-Verbose "Retrieving $($item.FileName) ..."

382

SnewFileName = Join-Path $newFolder S$item.FileName
SblobQuery = @"
SELECT
af.content
FROM
sys.assembly files af
WHERE
af.file id = $($item.ID)
"@
Scmd = "bcp “"SblobQuery " queryout T"SnewFileName ™"

-T -d $databaseName -f
Invoke-Expression $cmd

}

“rS$formatFileName™""

Chapter 7

-S S$instanceName

To ensure we have maintained the integrity of the DLL file, we can use Red Gate's .NET
Reflector tool to peek into what is in the DLL file. If all is well, you should be able to see
all the classes and the definition of the methods when you open up this file in Reflector.

Otherwise, Reflector will not be able to load this file.

#° NET Reflector 7.5.3.8

| Fle Edt Vien Tods Hep

OO HE|EE L | [rera0 =] | 2 |

-3 System Data (4.0.0.0)
-3 System Web (4.0.0.0)
«3 System.Drawing (4.0.0.0)
-1 System Windows.Forms (4.0.0.0)
-0 System, ServiceModel (4.0.0.0)
=+ System. Workflow.ComponentModel (4.0.0.0)
+31 System.Workflow.Runtime {4.0.0.0)
«1 System.Workflow. Activities (4.0.0.0)
3 QueryWorksCLR (1.0.4502,30032)
=l W% QueryWorksCLR. dll
|3 References
= {3 -
&3 <Module>
[E “% UserDefinedFunctions
& Base Types
(¥ Derived Types
i .ctor()
EM RegexMatch(SglChars, SqiString) =

return regex.IsMatch(new string{input.Value));

OHHEHHEHNEEEHR

«{ System (4.0.0.0) - (
2 System,Core (4.0.0.0) _I % U...ch{5qglChars, SqlString) : SqlBoclean
« System.Xml (4.0.0.0) [salFuncton]

public static SglBoclean RegexMatch{SalChars input, SalString pattern)
{

RegexOptions options = RegexOptions. IgnorePatternWhitespace | RegexOptions. Singleline;
Fegex regex = new Regex(pattern.Value, options);

See also

» The Listing user-defined assemblies recipe
» The Creating a new assembly recipe

» Tolearn more about .NET Reflector, visit Red-Gate's site for this product:

http://www.reflector.net/

383

http://www.reflector.net/
http://www.reflector.net/

Business Intelligence

In this chapter, we will cover:

>

Listing items in your SSRS Report Server

Listing SSRS report properties

Using ReportViewer to view your SSRS report
Downloading an SSRS report in Excel and PDF
Creating an SSRS folder

Creating an SSRS data source

Changing an SSRS report's data source reference
Uploading an SSRS report to Report Manager
Downloading all SSRS report RDL files

Adding a user with a role to an SSRS report
Creating folders in an SSIS package store and MSDB
Deploying an SSIS package to a package store
Executing an SSIS package stored in the package store or File System
Downloading an SSIS package into a file

Creating an SSISDB catalog

Creating an sSISDB folder

Deploying an ISPAC file to SSISDB

Executing an SSIS package stored in SSISDB
Listing SSAS cmdlets

Backing up an SSAS database

Restoring an SSAS database

Processing an SSAS cube

Business Intelligence

Introduction

Over the years and the various versions, SQL Server has increased its Business Intelligence
(BI) support and capabilities. Its Bl stack—Reporting Services, Integration Services, and
Analysis Services—have become strong players in today's Bl market.

PowerShell offers capabilities to automate and manage any Bl-related tasks—from rendering
SQL Server Reporting Services (SSRS) reports, to deploying the new SQL Server Integration
Services (SSIS) 2012 ISPAC files, to backing up and restoring SQL Server Analysis Services
(SSAS) cubes.

Listing items in your SSRS Report Server

In this recipe, we will list items in an SSRS Report Server that is configured in native mode.

Getting ready

Identify your SSRS 2012 Report Server URL. We will need to reference the
ReportService2010 web service, and you can reference it using <ReportServer URL>/
ReportService2010.asmx.

For this recipe, we will use the default Windows credential to authenticate to the server.

How to do it...

Let's explore the code required to list items in your SSRS Report Server that is configured in
native mode.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the following script and run:

$SReportServerUri = "http://localhost/ReportServer/
ReportService2010.asmx"

Sproxy = New-WebServiceProxy -Uri $ReportServerUri
-UseDefaultCredential

#list all children

$proxy.ListChildren("/", Strue) |

Select Name, TypeName, Path, CreationDate |
Format-Table -AutoSize

386

Chapter 8

#if you want to list only reports

#note this is using PowerShell V3 Where-Object syntax
$proxy.ListChildren("/", Strue) |

Where TypeName -eq "Report" |

Select Name, TypeName, Path, CreationDate |
Format-Table -AutoSize

Here is a sample result:

Name TypeName Path CreationDate

Customers Folder /Customers 5/11/2012 10:35:45 PM
Customer Contact Numbers Report /Customers/Customer Contact Numbers 5/13/2012 12:13:48 AM
Data Sources Folder /Data Sources 5/11/2012 9:59:23 PM
KERRIGAN DataSource /Data Sources/KERRIGAN 5/11/2012 9:59:23 PM
sample Datasource /Data Sources/Sample 5/13/2012 12:47:03 AM
sqQLsat 114 2012-May-11-0947PM Folder /sqLsat 114 2012-may-11-0947pPM 5/11/2012 9:47:12 PM

The SSRS ReportService2010 web service provides an API that allows objects in the Report
Server to be managed programmatically, whether the Report Server is configured for native
mode or SharePoint integrated mode.

This recipe assumes a SQL Server Reporting Services Native Mode install, although listing
reports in SSRS SharePoint Integrated mode should employ a similar approach.

The first step is to get a handle to create a web service proxy. A web service proxy in
PowerShell allows you to manage the web service as you would for any other PowerShell
object. To create a new web service proxy, you need to use the New-WebServiceProxy
cmdlet and pass to it the web service URL as follows:

SReportServerUri = "http://localhost/ReportServer/ReportService2010.
asmx"

Sproxy = New-WebServiceProxy -Uri SReportServerUri
-UseDefaultCredential

To display all the items in the Report Server, we just need to call the ListChildren method of
the ReportingService2010 web proxy object. This will list all items it can find at the path we
specified, in this case the root "/".

#list all children

$proxy.ListChildren("/", $true) |

Select Name, TypeName, Path, CreationDate |
Format-Table -AutoSize

387

Business Intelligence

If you want to list just the reports, we can pipe the results of the ListChildren method
and filter for TypeName = "Report". Note that in the old version of the web service,
ReportService2005, this property was called Type instead of TypeName.

#if you want to list only reports

#note this is using PowerShell V3 Where-Object syntax
$proxy.ListChildren("/", Strue) |

Where TypeName -eq "Report" |

Select Name, TypeName, Path, CreationDate |
Format-Table -AutoSize

» The Listing SSRS report properties recipe
» Learn more about the SSRS Report Server Web Service Endpoints from MSDN:
http://msdn.microsoft.com/en-us/library/ms155398.aspx

» Check out the MSDN articles for New-WebServiceProxy:
http://msdn.microsoft.com/en-us/library/dd315258.aspx

» Check out the MSDN articles for Report Server Namespace Management Methods:

http://msdn.microsoft.com/en-us/library/ms152872

Listing SSRS report properties

In this recipe, we will list a single SSRS report's properties.

Getting ready

Identify your SSRS 2012 report server URL. We will need to reference the
ReportService2010 web service, and you can reference it using:

<ReportServer URL>/ReportService2010.asmx
Specify your Report Manager URI in the variable $SReportServerUri.

Pick a report deployed in your SSRS 2012 Report Manager. Note the path to the item, and
replace the variable SreportPath with your own path.

388

http://msdn.microsoft.com/en-us/library/ms155398.aspx
http://msdn.microsoft.com/en-us/library/ms155398.aspx
http://msdn.microsoft.com/en-us/library/dd315258.aspx
http://msdn.microsoft.com/en-us/library/dd315258.aspx
http://msdn.microsoft.com/en-us/library/ms152872
http://msdn.microsoft.com/en-us/library/ms152872

Chapter 8

How to do it...

Here are the steps required to list SSRS report properties.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Add the following script and run:

SReportServerUri

= "http://localhost/ReportServer/
ReportService2010.asmx"

Sproxy = New-WebServiceProxy -Uri S$SReportServerUri

-UseDefaultCredential

SreportPath =

" /Customers/Customer Contact Numbers"

#using PowerShell V3 Where-Object syntax

$proxy.ListChildren("/",

Strue) |

Where-Object Path -eq S$SreportPath

A sample result follows:

ID 15b3dd87-d0de-43a0-8692-030dcfdab945
Name Customer Contact Numbers

Path /Customers/Customer Contact Numbers
virtualPath

TypeName Report

Size 23870

SizeSpecified True

Description

Hidden False

Hiddenspecified False

CreationDate 5/13/2012 12:13:48 AM
CreationDatespecified : True

ModifiedDate 5/13/2012 12:13:48 AM
ModifiedDatespecified : True

CreatedBy KERRIGAN\Administrator

ModifiedBy KERRIGAN\Administrator

ItemMetadata {}

To get SSRS 2012 Report Properties, we must first get a web service proxy.

$ReportServerUri = http://localhost/ReportServer/
ReportService2010.asmx

Sproxy = New-WebServiceProxy -Uri $ReportServerUri
-UseDefaultCredential

389

http://localhost/ReportServer/ReportService2010.asmx
http://localhost/ReportServer/ReportService2010.asmx

Business Intelligence

We must also identify which report we want to display properties for:
SreportPath = "/Customers/Customer Contact Numbers"

Once we get a proxy and once we know which report we are querying, we need to get the catalog
items that are related to this Report Server instance. We do this by using the ListChildren
method of the proxy object. This method accepts a starting path to traverse, and we will pass "/"
to indicate we want to get all items from the root path of the Report Server. We specify recursive
lookup by passing the Boolean value $true as a second parameter in ListChildren.

#using PowerShell V3 Where-Object syntax
$proxy.ListChildren("/", $true) |
Where-Object Path -eqg S$reportPath

To narrow down the displayed properties to just our report's, we can pipe the result of the
ListChildren method to the Where-Object cmdlet and filter only by reports that match
SreportPath. Note that we are using the PowerShell V3 Wwhere-0Object syntax here:

#using PowerShell V3 Where-Object syntax
$proxy.ListChildren("/", Strue) |
Where-Object Path -eq $reportPath

To do this in PowerShell V2:

#using PowerShell V2 Where-Object syntax
$proxy.ListChildren("/", Strue) |
Where-Object {$.Path -eq $reportPath}

Note that a report in ReportServer2010 web service is a CatalogItem class, nota
Report class, which was available in previous SSRS versions. If you pipe the previous code
to the Get -Member cmdlet, you will see TypeName at the beginning of the displayed results:

TypeName: Microsoft.PowerShell.Commands.NewWebserviceProxy.
AutogeneratedTypes.WebServiceProxyltServer Report

Service2010 asmx.CatalogItem

» The Listing items in your SSRS Report Server recipe
» Tolearn more about the CatalogItem class, check out:

http://msdn.microsoft.com/en-us/library/reportservice2010.
catalogitem

390

Chapter 8

Using ReportViewer to view your SSRS

report

This recipe shows how to display a report using the ReportViewer redistributable.

Getting ready

First, you need to download ReportViewer redistributable and install it on your machine.
At the time of writing of this book, the download link is at:

http://www.microsoft.com/en-us/download/details.aspx?id=6442

Identify your SSRS 2012 Report Server URL. We will need to reference the
ReportService2010 web service, and you can reference it using:

<ReportServer URL>/ReportService2010.asm

Pick a report you want to display using the ReportVviewer control. Identify the full path, and
replace the value of the variable $SreportViewer.ServerReport .ReportPath in the script.

How to do it...

This list shows how we can display a report using ReportViewer.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Load the assembly for ReportViewer as follows:

#load the ReportViewer WinForms assembly

Add-Type -AssemblyName "Microsoft.ReportViewer.WinForms,
Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080
ccol"

#load the Windows.Forms assembly
Add-Type -AssemblyName "System.Windows.Forms"

3. Add the following script and run:

SreportViewer = New-Object Microsoft.Reporting.WinForms.
ReportViewer

SreportViewer.ProcessingMode = "Remote"

391

Business Intelligence

392

SreportViewer.ServerReport.ReportServerUrl = "http://localhost/
ReportServer"
SreportViewer.ServerReport.ReportPath = "/Customers/Customer

Contact Numbers"

#if you need to provide basic credentials, use the following

#SreportViewer.ServerReport .ReportServerCredentials.
NetworkCredentials= New-Object System.Net.
NetworkCredential ("sgladmin", "P@ssword") ;

SreportViewer.Height = 600
SreportViewer.Width = 800
SreportViewer.RefreshReport ()

#icreate a new Windows form
Sform = New-Object Windows.Forms.Form

#we're going to make the form just slightly bigger
#than the ReportViewer

Sform.Height = 610

Sform.Width= 810

#form is not resizable
Sform.FormBorderStyle = "FixedSingle"

#do not allow user to maximize
Sform.MaximizeBox = S$false

Sform.Controls.Add (SreportViewer)

#show the report in the form
SreportViewer. Show ()

#show the form
$form.ShowDialog ()

Chapter 8

After you run the script, here is a sample result. Notice how the top bar is similar to
the top bar in your Report Manager:

M 4 1 of 27 b P | « @ | & A0 HE- | w00% - Find | Next
Customer Report

Name Style |Title Middle Last Name |Phone
Name Number

False Sanchez 697-555-0142
False Terri Lee Duffy 819-555-0175
False Roberto Tamburello 212-555-0187
False Rob Walters 612-555-0100
False Ms. Gail A Erickson 849-555-0139
False Mr. Jossef H Goldberg 122-555-0189

The ReportViewer is a control that allows you to embed and display an SSRS report
into a web or Windows form, and supply the user with the familiar interface they might
be accustomed to seeing when using the Report Manager. This control always connects
back to the Report Server when processing and rendering the report.

The ReportViewer is a redistributable package that does not come with Reporting
Services installations; you will need to download and install this separately. See the
Getting Ready section.

In this recipe, we are displaying a specific report in a Windows form.

To start, we have to load the assemblies related to Reportviewer and Windows forms:

#load the ReportViewer WinForms assembly

Add-Type -AssemblyName "Microsoft.ReportViewer.WinForms,
Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc9l"

#load the Windows.Forms assembly
Add-Type -AssemblyName "System.Windows.Forms"

393

Business Intelligence

We need to load the strong name of the ReportViewer.WinForms assembly using the
Add-Type cmdlet, that is, to load it with the assembly name, version, culture, and public
key token information. To determine the strong name, you can open up C: \Windows\
assembly and check the properties of the Microsoft .ReportViewer.WinForms
assembly. Note that you may get multiple versions of the assembly if you have different
versions of ReportViewer redistributable installed in your system.

+ Local Disk (C:) = Windows - assembly ~ - k23 I Search System32

bry * Sharewith = New folder

Assembly Name ¢ | \Version | Culture | Public Key Token | Proces.. |
:ﬁlMicrosoft.Repu:urﬂn'iewer.\"a'ebForms.resources 11.0.0.0 zh-CHS 239845dcdB080oc9 1 MSIL
3&!Micrc:soft.Repnrt‘.-'ie'..\'er.\“J'EbForms.resources 11.0.0.0 zh-CHT 89845dcda080cc91 MSIL
3@Microsoft.Report\ﬁewer.\"a’inForms 11.0.0.0 89845dcda080cc91 MSIL I
1EIMicrosoft.ReportViewer. WinForms 10.0.0.0 b03f5f7f11d50a3a MSIL
3@1Microsuft.ReportViewer.'L“J'inFDrms.resources 11.0.0.0 de #9845dcdB0800c9 1 MSIL

If you use the partial name to load the assembly, you can get an error similar to this:

Add-Type : Could not load file or assembly 'Microsoft.ReportViewer.
WinForms, Version=8.0.0.0, Culture=neutral,

PublicKeyToken=b03f5£f7f11d50a3a' or one of its dependencies. The system
cannot find the file specified.

A Microsoft Connect item (https://connect .microsoft.com/PowerShell/feedback/
details/417844/ctp3-v2b-add-type-a-microsoft-sglserver-smo-wont-load-
smo-assemblies) filed regarding this issue still appears to be true at the time of writing

of this book. The answer to the Connect item explains that Add-Type <partial name>
looks at a hardcoded list of assembly versions, which seems to be Version=8.0.0.0 for
Microsoft.ReportViewer.WinForms.

Once the assemblies are loaded, we then have to create a ReportViewer object:
SreportViewer = New-Object Microsoft.Reporting.WinForms.ReportViewer

We also need to set some properties that specify where and how the report is going to
be fetched:

SreportViewer.ProcessingMode = "Remote"
SreportViewer.ServerReport.ReportServerUrl = "http://localhost/
ReportServer"

SreportViewer.ServerReport.ReportPath = "/Customers/Customer Contact
Numbers"

https://connect.microsoft.com/PowerShell/feedback/details/417844/ctp3-v2b-add-type-a-microsoft-sqlserver-smo-wont-load-smo-assemblies
https://connect.microsoft.com/PowerShell/feedback/details/417844/ctp3-v2b-add-type-a-microsoft-sqlserver-smo-wont-load-smo-assemblies
https://connect.microsoft.com/PowerShell/feedback/details/417844/ctp3-v2b-add-type-a-microsoft-sqlserver-smo-wont-load-smo-assemblies

Chapter 8

ProcessingMode can either be Local or Remote. ReportServerUrl and ReportPath
are properties of the ServerReport object, and these should point to your Report Server
and the full path to your report. Should you need to specify the credentials to connect to the
Report Manager, you will need to set the ReportCredentials property, like this:

SreportViewer.ServerReport.ReportServerCredentials.NetworkCredentials
= New-Object System.Net.NetworkCredential ("sgladmin", "P@ssword") ;

We then also specify the ReportVviewer dimensions:

SreportViewer.Height = 600
SreportViewer.Width = 800
SreportViewer.RefreshReport ()

For this recipe, we embedded the ReportViewer object in a Windows form, and lastly,
showed it as a dialog form. Since we have pre-set the size of the report to 800 x 600, we
are going to disable the maximize button, and the resizability of the window to prevent the
users from resizing the form and seeing only empty spaces when the form is resized.

#create a new Windows form
Sform = New-Object Windows.Forms.Form

#we're going to make the form just slightly bigger
#than the ReportViewer

Sform.Height = 610

Sform.Width= 810

#form is not resizable
Sform.FormBorderStyle = "FixedSingle"

#do not allow user to maximize
Sform.MaximizeBox = S$false

S$form.Controls.Add ($SreportViewer)

#show the report in the form
SreportViewer.Show ()

#show the form
$form.ShowDialog ()

395

Business Intelligence

» The Downloading an SSRS report in Excel and PDF recipe
» Learn more about the ReportViewer class:

http://msdn.microsoft.com/en-us/library/microsoft.reporting.
winforms.reportviewer.aspx

» ReportViewer properties:

http://msdn.microsoft.com/en-us/library/microsoft.reporting.
webforms.reportviewer properties

» ReportViewer Web Server and Windows form controls:

http://msdn.microsoft.com/en-us/library/ms251771.aspx

Downloading an SSRS report in Excel and

PDF

This recipe shows how to download an SSRS report in Excel and PDF format.

Getting ready

To perform this recipe, you must first download and install the ReportVviewer control.
The ReportViewer control allows SSRS reports to be displayed and viewed to a web
or Windows form.

See the Using ReportViewer to view your SSRS report recipe on
s how and where to download the ReportVviewer control.

After installing the Reportviewer control, select a report that you wish to download into an
Excel or PDF version.

In this recipe, we will download a report /Customers/Customer Contact Numbers
into Excel and PDF. Alternatively, choose a report you wish to download and replace the
$reportViewer.ServerReport .ReportPath variable.

396

http://msdn.microsoft.com/en-us/library/microsoft.reporting.winforms.reportviewer.aspx
http://msdn.microsoft.com/en-us/library/microsoft.reporting.winforms.reportviewer.aspx
http://msdn.microsoft.com/en-us/library/microsoft.reporting.webforms.reportviewer_properties
http://msdn.microsoft.com/en-us/library/microsoft.reporting.webforms.reportviewer_properties
http://msdn.microsoft.com/en-us/library/microsoft.reporting.webforms.reportviewer_properties
http://msdn.microsoft.com/en-us/library/ms251771.aspx
http://msdn.microsoft.com/en-us/library/ms251771.aspx

Chapter 8

How to do it...

Let's explore the code required to view your report in Excel and PDF.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Load the ReportVviewer assembly:

Add-Type -AssemblyName "Microsoft.ReportViewer.WinForms,

Version=11.0.
ccol"

0.0, Culture=neutral, PublicKeyToken=89845dcd8080

3. Add the following script and run:

SreportViewer
ReportViewer

SreportViewer

SreportViewer
ReportServer"

SreportViewer

= New-Object Microsoft.Reporting.WinForms.

.ProcessingMode = "Remote"
.ServerReport .ReportServerUrl = "http://localhost/

.ServerReport.ReportPath = "/Customers/Customer

Contact Numbers"

#required var

iables for rendering

SmimeType = $null

$encoding = $null
Sextension = $null
Sstreamids = $Snull
Swarnings = $null

#export to Excel

SexcelFile = "C:\Temp\Customer Contact Numbers.xls"
Sbytes = S$reportViewer.ServerReport.Render ("Excel", $null,
[ref] SmimeType,
[ref] S$Sencoding,
[ref] S$extension,
[ref] S$streamids,
[ref] S$Swarnings)
$fileStream = New-Object System.IO.FileStream(SexcelFile, [System.

IO.FileMode] :

:OpenOrCreate)

SfileStream.Write (Sbytes, 0, $bytes.Length)
sfileStream.Close ()

397

Business Intelligence

#let's open up our Excel document

Sexcel = New-Object -comObject Excel.Application
Sexcel.visible = Strue

Sexcel .Workbooks.Open (SexcelFile) | Out-Null

#export to PDF
$pdfFile = "C:\Temp\Customer Contact Numbers.pdf"
Sbytes = $reportViewer.ServerReport.Render ("PDF", $null,
[ref] SmimeType,
[ref] S$Sencoding,
[ref] S$extension,
[ref] S$streamids,
[ref] Swarnings)

$fileStream = New-Object System.IO.FileStream($SpdfFile, [System.
I0.FileMode] : : OpenOrCreate)

SfileStream.Write (Sbytes, 0, $bytes.Length)
sfileStream.Close ()

#let's open up up our PDF application
[System.Diagnostics.Process] ::Start ($pdfFile)

For this recipe, we will need to load a few assemblies. We need to load the ReportViewer
assembly, which will render the SSRS report from Report Manager into different formats:

Add-Type -AssemblyName "Microsoft.ReportViewer.WinForms,
Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc9ol™"

We will also need to set the properties of the report:

SreportViewer = New-Object Microsoft.Reporting.WinForms.ReportViewer

SreportViewer.ProcessingMode = "Remote"
SreportViewer.ServerReport.ReportServerUrl = "http://localhost/
ReportServer"

SreportViewer.ServerReport.ReportPath = "/Customers/Customer Contact
Numbers"

There are also few variables we need to declare, to render our report. We need to declare these
because they need to be passed by reference to the Render method of ReportVviewer.

#required variables for rendering
SmimeType = S$null
Sencoding = $null

398

Chapter 8

Sextension = $null
Sstreamids = $null
Swarnings = $null

We want to render the report first as an Excel file. The ReportViewer handle has a Render
method that allows the report to be rendered in different formats, including Excel, PDF, and
image. To render a report to Excel, we must invoke the ServerReport .Render method.
The first parameter that we pass is for format, and it should be Excel. We are also going to
pass five output parameters for MIME type, encoding, extension, stream IDs, and warnings
respectively. We need to assign the result of this method's invocation into a byte variable.

#export to Excel

SexcelFile = "C:\Temp\Customer Contact Numbers.xls"

Sbytes = S$reportViewer.ServerReport.Render ("Excel", $null,
ref] S$mimeType,
ref] S$encoding,

[
[
[ref] Sextension,
[ref] S$streamids,
[

ref] S$warnings)

To create an Excel file based on what was rendered, we should use a System.
I0.FileStream object:

$fileStream = New-Object System.IO.FileStream(SexcelFile, [System.
IO0.FileMode] : : OpenOrCreate)

SfileStream.Write (Sbytes, 0, $bytes.Length)
sfileStream.Close ()

When done, we create an Excel . Application COM object. We pass the filename, and
open the workbook using the Excel object's Workbooks . Open method.

#let's open up our excel document

Sexcel = New-Object -comObject Excel.Application
Sexcel.visible = Strue

Sexcel .Workbooks.Open (SexcelFile) | Out-Null

To render the report in PDF format, the same ServerReport .Render method can be
invoked, but this time passing PDF instead of Excel as the first parameter:

$pdfFile = "C:\Temp\Customer Contact Numbers.pdf"

Sbytes = $reportViewer.ServerReport.Render ("PDF", $null,
ref] S$mimeType,
ref] S$encoding,

[
[
[ref] Sextension,
[ref] S$streamids,
[

ref] $warnings) ;

399

Business Intelligence

Saving the rendered PDF document also requires using the System.IO.FileStream object.

$fileStream = New-Object System.IO.FileStream($SpdfFile, [System.
IO.FileMode] : : OpenOrCreate)

SfileStream.Write ($Sbytes, 0, S$bytes.Length)
$fileStream.Close ()

The [System.Diagnostics.Process] : :Start method is then used to open the PDF
using the default application installed to run PDFs:

#let's open up up our PDF application
[System.Diagnostics.Process] ::Start ($SpdfFile)

» The Using ReportViewer to view your SSRS report recipe
» ReportViewer Web Server and Windows form controls:

http://msdn.microsoft.com/en-us/library/ms251771.aspx

» ServerReport.Render method

http://msdn.microsoft.com/en-us/library/microsoft.reporting.
webforms.serverreport.render (v=vs.100) .aspx

Creating an SSRS folder

In this recipe, we create a timestamped SSRS folder.

Getting ready

Identify your SSRS 2012 Report Server URL. We will need to reference the
ReportService2010 web service, and you can reference it using:

<ReportServer URL>/ReportService2010.asmx

How to do it...

Let's explore the code required to create an SSRS folder programmatically.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

http://msdn.microsoft.com/en-us/library/ms251771.aspx
http://msdn.microsoft.com/en-us/library/ms251771.aspx
http://msdn.microsoft.com/en-us/library/microsoft.reporting.webforms.serverreport.render(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/microsoft.reporting.webforms.serverreport.render(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/microsoft.reporting.webforms.serverreport.render(v=vs.100).aspx

Chapter 8

Add the following script and run:
SReportServerUri = "http://localhost/ReportServer/
ReportService2010.asmx"

Sproxy = New-WebServiceProxy -Uri $ReportServerUri
-UseDefaultCredential

#A workaround we have to do to ensure

#we don't get any namespace clashes is to
#capture the auto-generated namespace, and
#create our objects based on this namespace

#capture automatically generated namespace

#this is a workaround to avoid namespace clashes
#resulting in using -Class with New-WebServiceProxy
Stype = $Proxy.GetType () .Namespace

#formulate data type we need
Sdatatype = (Stype + '.Property')

#display datatype, just for our reference
Sdatatype

#create new Property

#if we were using -Class SSRS, this would be similar to
#Sproperty = New-Object SSRS.Property

Sproperty = New-Object ($datatype)

Sproperty.Name = "Description"

Sproperty.Value = "SQLSaturdays Rock! Attendees are cool!"
$folderName = "SQLSat 114 " + (Get-Date -format "yyyy-MMM-dd-
hhmmtt")

#Report SSRS Properties
#http://msdn.microsoft.com/en-us/library/msl52826.aspx
SnumProperties = 1

Sproperties = New-Object ($Sdatatype + '[]')$numProperties
Sproperties[0] = S$Sproperty

Sproxy.CreateFolder ($SfolderName, "/", Sproperties)
#display new folder in IE

Set-Alias ie "Senv:programfiles\Internet Explorer\iexplore.exe"
ie "http://localhost/Reports"

Business Intelligence

Once done, go to your Report Manager and verify that the folder has been created:

.ff Home - Report Manager - Windows Internet Explorer
@T\ - Ig. http:/localhost/Reports Pages Folder. aspx?ViewMode =Detail j @
e il { /Pages,

f\? Favorites | 1’5 Suggested Sites ~ & | Web Slice Gallery ~

{€& Home - Repart Manager | |

SQL Server Reporting Services

“& Home

X Delete Z* Move 4 Mew Folder J MNew Data Source i Report Builder K

[| Type Mame + Description
[[@ Customers
[T [Data Sources
B3 SQLSat 114 2012-May-13-1143PM k/ SQLSaturdays
r Rock! Attendees
are cooll

To create a folder, or any item, in your Report Server, we have to first create a handle to the
Report Server web service by creating a proxy:

SReportServerUri = "http://localhost/ReportServer/ReportService2010.
asmx"

Sproxy = New-WebServiceProxy -Uri SReportServerUri
-UseDefaultCredential

Typically, when you check sample code, you will find that the —Class switch is specified with
the New-WebServiceProxy class, like this:

Sproxy = New-WebServiceProxy -Uri SReportServerUri
-UseDefaultCredential -Class SSRS2008

We don't use —-Class in this recipe because of a couple of issues:

» When run from the PowerShell console, the script runs once and does not run
subsequent times in the same session. You will have to close the shell (Command
Line Interface or CLI) to release the previously created proxy object that holds that
namespace. As far as the web server proxy is concerned, this namespace has already
been created and we will not re-create it again. Remember what we created is just a
proxy. The actual object was allocated not in our session but on the server.

402

Chapter 8

» When run from the PowerShell ISE, you will get different host of issues, including
errors that say the namespace cannot be recognized.

. Seehttp://www.sglmusings.com/2012/02/04/resolving-
% ssrs-and-powershell-new-webserviceproxy-namespace-
s issue/ for more details on using the —Class switch for the New-

WebServiceProxy cmdlet.

On the other hand, if we do not use namespace, a different issue arises. The automatically
generated namespace is unpredictable. For example, a sample namespace is:

PS C:\Users\Administrator> $Proxy.GetType () .Namespace

Microsoft.PowerShell.Commands.NewWebserviceProxy.AutogeneratedTypes.
WebServiceProxyltServer ReportService2010
asmx

This poses a problem because we need to refer to this namespace when we create
any ReportService2010 object. To work around this issue, we can omit the -Class
and dynamically capture the namespace, and subsequently use it when creating our
SSRS objects.

In the following script, we are creating a Property object that we are going to use for our folder:

#icapture automatically generated namespace

#this is a workaround to avoid namespace clashes
#resulting in using -Class with New-WebServiceProxy
Stype = $Proxy.GetType () .Namespace

#formulate data type we need
Sdatatype = (Stype + '.Property')

#display datatype, just for our reference
Sdatatype

#icreate new Property

#if we were using -Class SSRS, this would be similar to
#Sproperty = New-Object SSRS.Property

Sproperty = New-Object ($datatype)

Once we have created the Property object, we can assign the values. One property we can
set for a folder is Description:

Sproperty.Name = "Description"
Sproperty.Value = "SQLSaturdays Rock! Attendees are cool!™"
$folderName = "SQLSat 114 " + (Get-Date -format "yyyy-MMM-dd-hhmmtt")

http://www.sqlmusings.com/2012/02/04/resolving-ssrs-and-powershell-new-webserviceproxy-namespace-issue/
http://www.sqlmusings.com/2012/02/04/resolving-ssrs-and-powershell-new-webserviceproxy-namespace-issue/

Business Intelligence

We then need to add this to a Property [] array, which is what the CreateFolder method of
the proxy accepts. Note that when we create this array, we still need to create this dynamically,
similar to how we created our Property object:

#Report SSRS Properties
#http://msdn.microsoft.com/en-us/library/msl52826.aspx
SnumProperties = 1

Sproperties = New-Object ($Sdatatype + '[]')$numProperties
Sproperties[0] = S$Sproperty

When done, we can create the folder using the CreateFolder method, which accepts the
folder name, the parent, and a properties array:

Sproxy.CreateFolder ($SfolderName, "/", Sproperties)

The last step we have in the recipe is creating an alias for IE, and launching our Report
Manager to verify the folder has been created:

#display new folder in IE
Set-Alias ie "Senv:programfiles\Internet Explorer\iexplore.exe"
ie "http://localhost/Reports"

» The Creating an SSRS folder recipe

» To learn more about the namespace collision issue mentioned in this recipe when
dealing with New-WebServiceProxy, check out:

http://www.sglmusings.com/2012/02/04/resolving-ssrs-and-
powershell-new-webserviceproxy-namespace-issue/

» Check out the ReportService2010.CreateFolder method

http://msdn.microsoft.com/en-us/library/reportservice2010.
reportingservice2010.createfolder.aspx

Creating an SSRS data source

In this recipe, we will create an SSRS data source.

Getting ready

In our recipe, we will create a data source called Sample that is stored in the /Data
Sources folder. This data source uses Integrated authentication and points to the
AdventureWorks2008R2 database.

404

http://www.sqlmusings.com/2012/02/04/resolving-ssrs-and-powershell-new-webserviceproxy-namespace-issue/
http://www.sqlmusings.com/2012/02/04/resolving-ssrs-and-powershell-new-webserviceproxy-namespace-issue/
http://www.sqlmusings.com/2012/02/04/resolving-ssrs-and-powershell-new-webserviceproxy-namespace-issue/
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.createfolder.aspx
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.createfolder.aspx
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.createfolder.aspx

Chapter 8

Before we start, we will need to identify the typical information needed for a data source,
including:

Property Value

Data source name Sample

Data source type SQL

Connection string Data Source=KERRIGAN;Initial
Catalog=AdventureWorks2008R2

Credentials Integrated

Parent (that is, folder where this /Data Sources

data source will be placed; must

exist already)

These are the same pieces of information you can find when you go to a data source's
properties in your Report Manager:

Name [KERRIGAN
Description: 2]
[~

[Hide in tile view
¥ Enable this data source

Data source type” | Microsoft SQL Server =

Connection string: |nata Source=KERRIGAN: Initial -~
Catalog=AdventureWorks2008R2 e

Connect using:
" Credentials supplied by the user running the report

Display the following text to prompt user for a user name and password

|Tg,-p-e or enter a user name and password to access the data source
T Use as Windows credentials when connecting to the data source

" Credentials stored securely in the report server

User name |

Password |

T Use as Windows credentials when connecting to the data source
T Impersonate the authenticated user after a connection has been made to the data source

& Windows integrated security

" Credentials are not required

Business Intelligence

How to do it...

1.

2.

406

Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

Add the following script and run:

$ReportServerUri = "http://localhost/ReportServer/
ReportService2010.asmx"

Sproxy = New-WebServiceProxy -Uri S$SReportServerUri
-UseDefaultCredential

Stype = $Proxy.GetType () .Namespace

#icreate a DataSourceDefinition

$dataSourceDefinitionType = (Stype + '.DataSourceDefinition')
$dataSourceDefinition = New-Object ($dataSourceDefinitionType)
$dataSourceDefinition.CredentialRetrieval = "Integrated"
$dataSourceDefinition.ConnectString = "Data

Source=KERRIGAN; Initial Catalog=AdventureWorks2008R2"
SdataSourceDefinition.extension = "SQL"
SdataSourceDefinition.enabled = S$Strue
$dataSourceDefinition.Prompt = S$null
SdataSourceDefinition.WindowsCredentials = $false

#NOTE this i1s SSRS native mode

#CreateDataSource method accepts the following parameters:
#datasource name

#iparent (data folder) - must already exist

#overwrite

#data source definition

#properties

$dataSource = "Sample"
Sparent = "/Data Sources"
Soverwrite = Strue

$newDataSource = $proxy.CreateDataSource ($SdataSource, S$Sparent,
Soverwrite, SdataSourceDefinition, $null)

Chapter 8

When done, open up your Report Manager and confirm that the data source has
been created:

Home

SaL Server Reporting Services

—& Data Sources

X Delete 2 Move 4 Mew Folder
T Type/Name +

r 4 KERRIGAM
-

_Ll Sample |

To create a data source programmatically, we first need to get a web service proxy:

SReportServerUri = "http://localhost/ReportServer/ReportService2010.
asmx"

Sproxy = New-WebServiceProxy -Uri $ReportServerUri
-UseDefaultCredential

We then need to capture the automatically generated namespace. We will use this in
succeeding steps:

Stype = $Proxy.GetType () .Namespace

We then need to create a DataSourceDefinition class. We start by using our automatically
generated namespace to help us create a new DataSourceDefinition object:

#icreate a DataSourceDefinition

SdataSourceDefinitionType = (Stype + '.DataSourceDefinition')
SdataSourceDefinition = New-Object ($SdataSourceDefinitionType)

See the How it works... section of the Creating an SSRS folder recipe
i for additional details on automatically generated namespace issues.

We then need to specify the properties of DataSourceDefinition:

» CredentialRetrieval specifies how to retrieve credentials when Report Server

needs to connect to the data source. It can be one of the following: None, Prompt,
Integrated, or Store.

Business Intelligence

» ConnectionString is the connection string to the data source.

» Extension is the data source extension, and can be either: SQL, OLEDB, ODBC,
or a custom extension.

We are also setting the report so that it does not prompt for credentials when run by setting
the Prompt property to null; and WindowsCredentials to be false, for the report not
to pass credentials as Windows credentials:

SdataSourceDefinition.CredentialRetrieval = "Integrated"
$dataSourceDefinition.ConnectString = "Data Source=KERRIGAN;Initial
Catalog=AdventureWorks2008R2"

SdataSourceDefinition.extension = "SQL"

SdataSourceDefinition.enabled = S$true
SdataSourceDefinition.Prompt = $null
SdataSourceDefinition.WindowsCredentials = $false

To create a data source in native mode, we need to use the CreateDataSource method,
which accepts five parameters:

» Data source name

» Parent

» Overwrite

» Data source definition

» Properties

This is illustrated in the following code:

$dataSource = "Sample"
Sparent = "/Data Sources"
Soverwrite = S$true

SnewDataSource = $proxy.CreateDataSource ($SdataSource, S$parent,
Soverwrite, $dataSourceDefinition, $null)

» The Creating an SSRS folder recipe
» The Changing an SSRS report's data source reference recipe
» Learn more about the ReportService.DataSourceDefinition class:

http://msdn.microsoft.com/en-us/library/reportservice2010.
datasourcedefinition.aspx

408

http://msdn.microsoft.com/en-us/library/reportservice2010.datasourcedefinition.aspx
http://msdn.microsoft.com/en-us/library/reportservice2010.datasourcedefinition.aspx
http://msdn.microsoft.com/en-us/library/reportservice2010.datasourcedefinition.aspx

Chapter 8

Changing an SSRS report’'s data source

reference

In this recipe, we will update an SSRS report's data source.

Getting ready

In our recipe we will change the data source of our report /Customers/Customer Contact
Numbers, which originally uses the data source reference /Data Sources/Sample to point
to /Data Sources/KERRIGAN.

Alternatively, pick an existing report in your environment and the data source you want this
report to reference. Note the names and the path to these items.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the following script and run:
$ReportServerUri = "http://localhost/ReportServer/

ReportService2010.asmx"

Sproxy = New-WebServiceProxy -Uri S$SReportServerUri
-UseDefaultCredential

#get autogenerated namespace
Stype = $proxy.GetType () .Namespace

#specify which report's data source to change
SreportPath = "/Customers/Customer Contact Numbers"

#look for the report in the catalog items array

#note we are using PowerShell V3 Where-Object syntax

Sreport = $proxy.ListChildren("/", Strue) |
Where-Object Path -eq S$SreportPath

#iget current data source name
#this needs to be the same name in the RDL
$dataSourceName = $ (Sproxy.GetItemDataSources (Sreport.Path)) .Name

#specify new data source reference
$newDataSourcePath = "/Data Sources/Sample"

Business Intelligence

#dynamically create data types based on the new
#autogenerated namespace

$dataSourceType = (Stype + '.DataSource')

SnumItems = 1

SdataSourceArrayType = ($Stype + '.DataSourcel]')
$dataSourceReferenceType = ($type + '.DataSourceReference')

#icreate a data source array containing
#the new data source path

$dataSourceArray = New-Object ($SdatasourceArrayType) $numltems

$dataSourceArray[0] = New-Object (SdataSourceType)
$dataSourceArray[0] .Name = S$dataSourceName

$dataSourceArray[0] .Item = New-Object ($dataSourceReferenceType)

$dataSourceArray[0] .Item.Reference = $newDataSourcePath

#set the new data source
Sproxy.SetItemDataSources (Sreport.Path, $dataSourceArray)

You can confirm the changes by opening the Report Manager, and opening that
report's Data Sources. Ensure that the data source reference now points to the

correct path:

Home = Customers
@ SQL Server Reporting Services
Customer Contact Numbers

Properties
/ KERRIGAN
Data Sources

& A shared data source

Subscriptions /Data Sources/KERRIGAN

Processing Options " A custom data source

Cache Refresh Options Data source type Ih‘licrcscﬂ SAL Server

In order to change a report's data source, we must first get a handle to this report.

The first step is to create a web server proxy:

SReportServerUri = "http://localhost/ReportServer/ReportService2010.

asmx"

Sproxy = New-WebServiceProxy -Uri SReportServerUri
-UseDefaultCredential

410

Chapter 8

In this recipe, we will also be creating a few ReportService2010 objects, so we will need to
capture the dynamically generated namespace:

Stype = S$proxy.GetType () .Namespace

See the How it works... section of the Creating an SSRS folder recipe
s for additional details on automatically generated namespace issues.

We then need to get a handle to the report. In order to do this, we need to capture all the
Report Server objects, and extract the report that matches the path we specified:

#look for the report in the catalog items array

#note we are using PowerShell V3 Where-Object syntax

$report = $proxy.ListChildren("/", $true) |
Where-Object Path -eqg SreportPath

We also need to capture the report's current data source name by using the
GetItemDataSources method of the proxy object. We need to keep the same name.

% Note that paths, report names, and data source names and references
s are case sensitive.

Later in the code, we will need to change the data source path it references:

#get current data source name
#this needs to be the same name in the RDL
SdataSourceName = $ (Sproxy.GetItemDataSources (Sreport.Path)) .Name

#specify new data source reference
$newDataSourcePath = "/Data Sources/Sample"

The next step is to create a data source array (DataSource [] object). Because we have a
dynamically generated namespace, we must first compose the data types dynamically based
on the namespace—here, stored in the variable $type:

#dynamically create data types based on the new
#autogenerated namespace

S$dataSourceType = (Stype + '.DataSource')

SnumItems = 1

SdataSourceArrayType = (Stype + '.DataSourcel]')
SdataSourceReferenceType = ($Stype + '.DataSourceReference')

Business Intelligence

To create a data source array, we use the new types:

#icreate a data source array containing

#the new data source path

$dataSourceArray = New-Object ($datasourceArrayType) Snumltems

$dataSourceArray [0] = New-Object ($SdataSourceType)

$dataSourceArray [0] .

SdataSourceArray [0] .Item = New-Object ($dataSourceReferenceType)
[ol.

S$dataSourceArray

Name = $dataSourceName

Item.Reference = $newDataSourcePath

We are now ready to call the SetItembDataSources method of the proxy object to change
our report's data source reference. This method accepts a catalog item name path, and a
data source array.

Sproxy.SetItemDataSources (Sreport.Path, $dataSourceArray) ;

» The Creating an SSRS folder recipe
» The Creating an SSRS data source recipe
» Learn more about the SetItemDataSources method:

http://msdn.microsoft.com/en-us/library/reportservice2010.
reportingservice2010.setitemdatasources.aspx

Uploading an SSRS report to Report

Manager

In this recipe, we will upload an SSRS Report (. rdl file) to the Report Manager.

Getting ready

You can use the sample RDL file that comes with this cookbook and save it to the C: \SSRS
folder. The sample RDL file uses the AdventureWorks2008R2 sample database. Alternatively,
use an RDL file that is readily available to you. Be sure to update the RDL file reference in the
script to reflect where your report file is located.

How to do it...

Here is how we can upload an RDL file to the Report Manager:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.setitemdatasources.aspx
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.setitemdatasources.aspx
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.setitemdatasources.aspx

Chapter 8

2. Add the following script and run:
SReportServerUri = "http://localhost/ReportServer/
ReportService2010.asmx"

Sproxy = New-WebServiceProxy -Uri $ReportServerUri
-UseDefaultCredential

Stype = S$proxy.GetType () .Namespace

#specify where the RDL file is
$rdl = "C:\SSRS\Customer Sales.rdl"

#extract report name from the RDL file
SreportName = [System.IO.Path]::GetFileNameWithoutExtension ($Srdl)

#get contents of the RDL
SbyteArray = Get-Content $rdl -Encoding Byte

#The fully qualified URL for the parent folder that will contain

#the item.
$parent = "/Customers"
Soverwrite = S$true

Swarnings = $null

#create report
Sreport = S$proxy.CreateCatalogItem("Report", SreportName, S$parent,
Soverwrite, S$byteArray, $null, [ref]S$warnings)

#data source name must match what's in the RDL
SsdataSourceName = "KERRIGAN"

#data source path should match what's in the report server
$dataSourcePath = "/Data Sources/KERRIGAN"

#when we upload the report, if the

#data source from the source is different

#or has a different path from what's in the
#report manager, the data source will be broken
#and we will need to update

#create our data type references

SdataSourceArrayType = (Stype + '.DataSourcel]')
$dataSourceType = ($type + '.DataSource')
$dataSourceReferenceType = ($Stype + '.DataSourceReference')

Business Intelligence

#icreate data source array
$numDataSources = 1

SdataSourceArray = New-Object (SdataSourceArrayType) $numDataSourc
es

$dataSourceReference = New-Object ($dataSourceReferenceType)

#update data source

SdataSourceArray[0] = New-Object (sSdataSourceType)
SdataSourceArray[0] .Name = S$SdataSourceName
$dataSourceArray[0] .Item = New-Object ($dataSourceReferenceType)
SdataSourcearray[0] .Item.Reference = $dataSourcePath

Sproxy.SetItemDataSources (Sreport.Path, $dataSourceArray)

First, we create a web service proxy object:

$ReportServerUri = "http://localhost/ReportServer/ReportService2010.
asmx"

Sproxy = New-WebServiceProxy -Uri SReportServerUri
-UseDefaultCredential

Stype = $Proxy.GetType () .Namespace

We will then need to specify the path to the RDL file. In this recipe, we will keep the file name
the same as the RDL filename, without the extension:

#specify where the RDL file is
Srdl = "C:\SSRS\Customer Sales.rdl"

#textract report name from the RDL file
SreportName = [System.IO.Path]::GetFileNameWithoutExtension ($Srdl)

We need to extract the contents of the RDL file to create the report programmatically. To do
so, we will use the Get -Content cmdlet, but using the switch -Encoding to ensure we
preserve the encoding used in the report:

#get contents of the RDL
SbyteArray = Get-Content $rdl -Encoding Byte

To create the report, we need to use the CreateCatalogItem method of the proxy object,
which accepts the catalog item type, report name, parent, overwrite Boolean flag, the
contents of the RDL file, and a warnings variable:

#The fully qualified URL for the parent folder that will contain
#the item.

Sparent = "/Customers"

414

Chapter 8

Soverwrite = Strue
Swarnings = $null
#ficreate report

Sreport = Sproxy.CreateCatalogItem("Report", SreportName, Sparent,
Soverwrite, S$byteArray, $null, [ref]S$warnings)

The supported CatalogItem types in native mode are:

» Report

» DataSet

» Resource

» DataSource

» Model

At this point, the report is already uploaded to the server. However, if the data source path
stored in the report is different from where the data source is located in the server, the report
will still not be usable.

To change the data source, we must create a DataSource array, and change only the
DataSourceReference value. We change the report's data source reference by using the
SetItemDataSources method of the proxy object:

#data source name must match what's in the RDL
$dataSourceName = "KERRIGAN"

#data source path should match what's in the report server
S$dataSourcePath = "/Data Sources/KERRIGAN"

#when we upload the report, if the

#data source from the source is different

#or has a different path from what's in the
#ireport manager, the data source will be broken
#and we will need to update

#icreate our data type references

SdataSourceArrayType = (Stype + '.DataSourcel]')
S$dataSourceType = (Stype + '.DataSource')
SdataSourceReferenceType = ($Stype + '.DataSourceReference')

#icreate data source array

$numDataSources = 1

$dataSourceArray = New-Object (SdataSourceArrayType) $numDataSources
SdataSourceReference = New-Object ($SdataSourceReferenceType)

Business Intelligence

#update data source

$dataSourceArray[0] = New-Object (SdataSourceType)
$dataSourceArray[0] .Name = S$dataSourceName
$dataSourceArray[0] .Item = New-Object ($dataSourceReferenceType)
$dataSourcearray[0] .Item.Reference = $dataSourcePath

Sproxy.SetItemDataSources (Sreport.Path, $dataSourceArray)

recipe for more details on the steps.

» The Using ReportViewer to view your SSRS report recipe

[See the Changing an SSRS report's data source reference]
-

» The Downloading an SSRS report in Excel and PDF recipe
» Check out more information on the CreateCatalogItem method:

http://msdn.microsoft.com/en-us/library/reportservice2010.
reportingservice2010.createcatalogitem.aspx

Downloading all SSRS report RDL files

This recipe shows how you can download all RDL files from your Report Server.

Getting ready

In this recipe, we will download all RDL files from the SSRS Report Server into C: \SSRS\
in a subfolder structure that mimics the folder structure in the Report Server.

Identify your SSRS 2012 Report Server URL. We will need to reference the
ReportService2010 web service, and you can reference it using:

<ReportServer URL>/ReportService2010.asmx

How to do it...

Let's explore the code required to download the RDL files from your Report Server.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.createcatalogitem.aspx
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.createcatalogitem.aspx
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.createcatalogitem.aspx

Chapter 8

Add the following script and run:

SVerbosePreference = "Continue"

SReportServerUri = "http://localhost/ReportServer/
ReportService2010.asmx"

Sproxy = New-WebServiceProxy -Uri $ReportServerUri
-UseDefaultCredential

$destinationFolder = "C:\SSRS\"

#icreate a new folder where we will save the files

#we'll use a time-stamped folder, format similar

#to 2012-Mar-28-0850PM

Sts = Get-Date -format "yyyy-MMM-dd-hhmmtt"

SfolderName = "RDL Files $(S$tg)"

$fullFolderName = Join-Path -Path "$($SdestinationFolder)"
-ChildPath $folderName

#If the path exists, will error silently and continue
New-Item -ItemType Directory -Path $fullFolderName -ErrorAction
SilentlyContinue

#get all reports
#second parameter means recursive
#CHANGE ALERT:
#in ReportingService2005 - Type
#in ReportingService2010 - TypeName
$proxy.ListChildren("/", Strue) |
Select TypeName, Path, ID, Name |
Where-Object TypeName -eqg "Report" |
ForEach-Object ({
Sitem = $_
[string] $path = $item.Path
$SpathItems=$path.Split("/")

#get path name; we will mirror structure
#when we save the file

SreportName = S$Spathitems[$pathItems.Count -1]
$subfolderName = $path.Trim($reportName)

sfullSubfolderName = Join-Path -Path "$($fullFolderName)"
-ChildPath $subfolderName

Business Intelligence

#If the path exists, will error silently and continue

New-Item -ItemType directory -Path $fullSubfolderName
-ErrorAction SilentlyContinue

#CHANGE ALERT:

#in ReportingService2005 - GetReportDefinition
#in ReportingService2010 - GetItemDefinition
#use SProxy | gm to learn more

[byte[]] SreportDefinition = $proxy.GetItemDefinition($item.
Path)

#note here we're forcing the actual definition to be
#stored as a byte array

#if you take out the @() from the

#MemoryStream constructor,

#you'll get an error

[System.IO.MemoryStream] S$memStream = New-Object System.
I0.MemoryStream (@ (, $reportDefinition))

#save the XML file
SrdlFile = New-Object System.Xml.XmlDocument
SrdlFile.Load (SmemStream) | Out-Null

$fullReportFileName = "$($fullSubfolderName)$ ($Sitem.Name) .rdl"
Write-Verbose "Saving $($fullReportFileName) "
SrdlFile.Save ($fullReportFileName)

Write-Verbose "Done downloading your RDL files to
$(sfullFolderName) "

S$VerbosePreference = "SilentlyContinue"

This recipe will re-create the entire folder structure of the Report Manager, and save the
appropriate RDL files in their respective folders.

To do this, we first create a proxy to the ReportService2010 web service:

$ReportServerUri = "http://localhost/ReportServer/ReportService2010.
asmx"

Sproxy = New-WebServiceProxy -Uri SReportServerUri
-UseDefaultCredential

418

Chapter 8

We will also need to specify where we want to store the downloaded RDL files:
$destinationFolder = "C:\SSRS\"

We also want to create a new timestamped folder where we will store the RDL files:

Sts = Get-Date -format "yyyy-MMM-dd-hhmmtt"

SfolderName = "RDL Files $(S$ts)"
SfullFolderName = Join-Path -Path "$ ($SdestinationFolder)" -ChildPath
sfolderName

We then get all report items. Note that we have to filter these to return only items with
TypeName = Report:

$proxy.ListChildren("/", $true) |
Select TypeName, Path, ID, Name |
Where-Object TypeName -eq "Report" |
ForEach-Object ({

We can pass all Report items to the Foreach-0Object cmdlet so we can download each
RDL file from Report Manager. For each report, we want to investigate the path. If the path
contains a series of folders, we want to recreate these folders in our destination folder:

Sitem = $_
[string] $path = $item.Path
$pathItems=$path.Split("/")

#get path name; we will mirror structure
#iwhen we save the file

SreportName = $pathitems [$SpathItems.Count -1]
SsubfolderName = $path.Trim($reportName)

sfullSubfolderName = Join-Path -Path "$($fullFolderName) "
-ChildPath $subfolderName

#If the path exists, will error silently and continue
New-Item -ItemType directory -Path $fullSubfolderName -ErrorAction
SilentlyContinue

Once we have created the folder structure, we can get the report definition using the
GetItemDefinition method of the proxy object. This needs to be stored in a byte array, to
ensure we store unaltered, raw bytes of the report:

#CHANGE ALERT:

#in ReportingService2005 - GetReportDefinition

#in ReportingService2010 - GetItemDefinition

#use $Proxy | gm to learn more

[byte[]] SreportDefinition = $proxy.GetItemDefinition ($item.Path)

419

Business Intelligence

#note here we're forcing the actual definition to be
#stored as a byte array

#if you take out the @() from the

#MemoryStream constructor,

#you'll get an error

[System.IO.MemoryStream] S$memStream = New-Object System.
I0.MemoryStream (@ (, SreportDefinition))

We can then store the memory stream in an Xm1Document object, which can in turn save the
file back to the filesystem, given a full file path and name:

#save the XML file
SrdlFile = New-Object System.Xml.XmlDocument
SrdlFile.Load (SmemStream) | Out-Null

$fullReportFileName = "$($fullSubfolderName) $ ($Sitem.Name) .rdl"
Write-Verbose "Saving $($fullReportFileName) "
SrdlFile.Save ($fullReportFileName)

See also

» The Using ReportViewer to view your SSRS report recipe
» The Downloading an SSRS Report in Excel and PDF recipe
» Check out these MSDN articles related to:

O GetItemDefinition:

http://msdn.microsoft.com/en-us/library/
reportservice2010.reportingservice201l0.getitemdefinition.
aspx

0 MemoryStream:

http://msdn.microsoft.com/en-us/library/system.
io.memorystream.aspx

420

http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.getitemdefinition.aspx
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.getitemdefinition.aspx
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.getitemdefinition.aspx
http://msdn.microsoft.com/en-us/library/system.io.memorystream.aspx
http://msdn.microsoft.com/en-us/library/system.io.memorystream.aspx
http://msdn.microsoft.com/en-us/library/system.io.memorystream.aspx

Chapter 8

Adding a user with a role to an SSRS report

In this recipe, we will add a user with a few roles to SSRS.

Getting ready

In this recipe, we will add QUERYWORKS\aterra as a browser and Content Manager to the
Customer Contact Numbers report.

For your environment, instead of using QUERYWORKS\aterra, you can identify a user you
want to add to an existing report, and which roles you want to assign to them.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the following script and run:
$SReportServerUri = "http://localhost/ReportServer/
ReportService2010.asmx"
Sproxy = New-WebServiceProxy -Uri $ReportServerUri
-UseDefaultCredential
Stype = $Proxy.GetType () .Namespace

$itemPath = "/Customers/Customer Contact Numbers"

#this will hold all the groups/users for a report
SnewPolicies = @()
Sinherit = $null

#list current report users
Sproxy.GetPolicies ($itemPath, [ref]s$inherit)

#NOTE that when we change policies, it will
#automatically break inheritance

#ALSO NOTE that when you programmatically mess

#with policies, you will need to "re-add" users that were
#already there, if you want them to keep on having access
#to your reports

#this gets all users who currently have
#access to this report
#ineed to pass $inherit by reference

Business Intelligence

422

Sproxy.GetPolicies ($SitemPath, [ref]S$inherit) |
ForEach-Object ({

#re-add existing policies

$newPolicies += $

SpolicyDataType = (Stype + '.Policy')
$newPolicy = New-Object ($policyDataType)
$newPolicy.GroupUserName = "QUERYWORKS\aterra"

#a policy must have roles
SroleDataType = (Stype + '.Role')
$newRole = New-Object ($SroleDataType)
SnewRole.Name = "Browser"

#add the role to the policy
SnewPolicy.roles += $newRole

#a policy must have roles
SroleDataType = (Stype + '.Role')
$newRole = New-Object ($SroleDataType)
$newRole.Name = "Content Manager"

#add the role to the policy
SnewPolicy.roles += $newrole

#icheck if this user already exists in your policy array
#if user does not exist yet with current role, add policy

if ($($newPolicies | ForEach-Object {$.GroupUserName})
-notcontains $newPolicy.GroupUserName)

{

SnewPolicies += $newPolicy

#set the policies
Sproxy.SetPolicies ($itemPath, SnewPolicies)

#list new report users
Sproxy.GetPolicies ($SitemPath, [ref]S$inherit)

When done, check the report that you just added a user to, from Report Manager.
Go to its Properties and look at its security settings. Note that the user has been
added, but inheritance is broken—as illustrated by the checkboxes, and the extra
menu item called Revert to Parent Security has been added:

Chapter 8

/€ customer Contact Numbers - Report Manager | | ‘& @ | E%Q v Page - Safety ~ Tools - '@
Home = Customers Home | My Subscriptions | Site Settings | Help)

@ SQL Server Reporting Services
Customer Contact Numbers

Search | L

X Delete 447 New Role Assignment %, Revert to Parent Security

Properties - Group or User + Role(s)

[Edit BUILTINVAdministrators Content Manager
Data Sources [Edit QUERYWORKS\aterra Browser, Content Manager
L= 2% cintiny

When adding or changing users in an SSRS report programmatically, we will need to get a
handle to the whole policy object, add or change the users or roles, and then re-apply the policy.
Because this is manually changing a single item's security, inheritance is automatically broken
for this item.

First, we need to create a proxy, and extract the dynamically created namespace.

SReportServerUri = "http://localhost/ReportServer/ReportService2010.
asmx"

Sproxy = New-WebServiceProxy -Uri $ReportServerUri
-UseDefaultCredential

Stype = S$proxy.GetType () .Namespace

See the How it works... section of the Create an SSRS folder recipe
K for additional details on automatically generated namespace issues.

We also need to specify the path of the report we want to change:

S$itemPath = "/Customers/Customer Contact Numbers"

To change policies, we will need to re-save existing policies. We will do this by retrieving the
current users and roles using the GetPolicies method of the proxy object, and saving them
to an array. The $inherit variable will hold whether that item inherits its security policy from
its parent or not:

SnewPolicies = @()
$inherit = $null

#this gets all users who currently have
#taccess to this report

Business Intelligence

#ineed to pass $inherit by reference
Sproxy.GetPolicies ($SitemPath, [ref]S$inherit) |
ForEach-Object ({

#ire-add existing policies

$newPolicies += $_

}

We then need to specify the account we are adding. This needs to be held in a
ReportingService2010.Policy object, and can either be a user or group name:

SpolicyDataType = (Stype + '.Policy')
$newPolicy = New-Object ($policyDataType)
$newPolicy.GroupUserName = "QUERYWORKS\aterra"

Next, we add the roles that will be associated with this group or user:

#a policy must have roles

SroleDataType = (Stype + '.Role')
$newRole = New-Object ($SroleDataType)
SnewRole.Name = "Browser"

#add the role to the policy
SnewPolicy.roles += $newRole

#a policy must have roles

SroleDataType = (Stype + '.Role')
$newRole = New-Object ($SroleDataType)
$newRole.Name = "Content Manager"

#add the role to the policy
SnewPolicy.roles += $newrole

Once the new account and roles are in place, we need to add it to our policy array, which
contains all existing policies for the item:

#icheck if this user already exists in your policy array
#if user does not exist yet with current role, add policy

if ($($newPolicies | ForEach-Object {$.GroupUserName}) -notcontains
S$newPolicy.GroupUserName)
{

SnewPolicies += $newPolicy

424

Chapter 8
When everything is set, we can call the SetPolicies method of the proxy object:

#set the policies
Sproxy.SetPolicies ($itemPath, SnewPolicies)

» Check out these MSDN articles related to:

O GetPolicies:
http://msdn.microsoft.com/en-us/library/
reportservice2010.reportingservice2010.getpolicies

O SetPolicies:
http://msdn.microsoft.com/en-us/library/
reportservice2010.reportingservice2010.setpolicies

0 InheritParentSecurity:

http://msdn.microsoft.com/en-us/library/
reportservice2010.reportingservice2010.
inheritparentsecurity

Creating folders in an SSIS package store

and MSDB

In this recipe, we will see how to create a folder in the SSIS instance and the package store.

Getting ready

For this recipe, we will create a timestamped folder prefixed with the word QueryWorks.
Feel free to replace it with your folder name by changing the variable snewfolder.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the ManagedDTS assembly as follows:

#add ManagedDTS assembly

Add-Type -AssemblyName "Microsoft.SglServer.ManagedDTS,
Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080
ccol"

http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.getpolicies
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.getpolicies
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.getpolicies
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.getpolicies
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.setpolicies
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.setpolicies
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.setpolicies
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.setpolicies
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.inheritparentsecurity
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.inheritparentsecurity
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.inheritparentsecurity
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.inheritparentsecurity

Business Intelligence

3.

426

Add the following script and run:

$server = "KERRIGAN"

#create new app

Sapp = New-Object ("Microsoft.SglServer.Dts.Runtime.Application")
Sts = Get-Date -format "yyyy-MMM-dd-hhmmtt"

Snewfolder = "QueryWorks File System $($ts)"

#folder in package store

#will appear under "Stored Packages > File System"

if (!Sapp.FolderExistsOnDtsServer ("\File System\S$ (Snewfolder)",
$Sserver))

{

Sapp.CreateFolderOnDtsServer ("\File System\", S$newfolder,
$Sserver)

}

#folder in SSIS instance

#will appear under "Stored Packages > MSDB"

Snewfolder = "QueryWorks SSIS $(S$ts)™"

if (!Sapp.FolderExistsOnSglServer ($newfolder, $server, $null,
$null))

{

Sapp.CreateFolderOnSglServer ("\", Snewfolder, $server, S$null,
Snull)

}

When the script finishes, connect to the Integration Services instance. Expand both
File System and MSDB nodes, and confirm that the folders have been created.

=l _b KERRIGAM (Integration Services 11.0.2100 - KERRIGAMN\Administrator)
[Running Packages
= [Stored Packages

[[File System
[QueryWorks File System 2012-May-18-0345PM

= [J MsDE
[Data Caollector
[Maintenance Plans
3 QueryWarks ‘/
[QueryWorks 5515 2012-4May-15-0345FPM
| % SamplePackage

Chapter 8

The assembly Microsoft.SglServer.ManagedDTS exposes SSIS 2005 and 2008 objects
for programmatic access. Although this can be considered legacy SSIS when SQL Server 2012
came out, this method was still supported, and will still be used by developers.

To create folders in the package store and the SSIS instance, we must first load the
ManagedDTS assembly. We need to do this explicitly because this assembly does not come
with the SQLPS module:

#add ManagedDTS assembly
Add-Type -AssemblyName "Microsoft.SglServer.ManagedDTS,
Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc9ol™"

We then need to create an application object, which contains the methods to create the folders:

Sserver = "KERRIGAN"

#create new app
Sapp = New-Object ("Microsoft.SglServer.Dts.Runtime.Application")

To create the folder in the SSIS package store, we first check if the folder is created
already. If not, we create the folder using the CreateFolderOnDtsServer method

of the DTS Application object, which accepts the parent path, the new folder name,
and the server name:

#folder in package store
#will appear under "Stored Packages > File System"

if (!Sapp.FolderExistsOnDtsServer ("\File System\S$ (Snewfolder)",
Sserver))

{
}

Creating the folder in the SSIS instance is very similar to creating folders in the package store.
However, the methods to check and create the instance folders accept more parameters.
Both the FolderExistsOnSglServer and CreateFolderOnSqlServer methods of

the DTS application object accept two extra parameters for username and password used

to authenticate to SQL Server:

Sapp.CreateFolderOnDtsServer ("\File System\", $newfolder, $server)

#folder in SSIS instance

#will appear under "Stored Packages > MSDB"

Snewfolder = "QueryWorks SSIS $(S$ts)™"

if (!Sapp.FolderExistsOnSglServer ($Snewfolder, S$server, $null, S$null))

{
Sapp.CreateFolderOnSglServer ("\", S$newfolder, $server, $null,
Snull)

}

Business Intelligence

See also

» The Creating an SSISDB folder recipe

» Learn more about the Application class:

http://msdn.microsoft.com/en-us/library/ms211665

Deploying an SSIS package to the package

store

In this recipe, we will deploy an SSIS package (.dtsx) to the SSIS package store.

Getting ready

Use the sample SSIS package—Customer Package.dtsx—that came with the downloadable
code of this book. Save this file to ¢: \ssIs. We will deploy this to our SSIS instance, and save
it under the \File System\QueryWorks package folder. Alternatively, use a .dtsx package
that is readily available in your environment.

How to do it...

Let's explore the code required to deploy an SSIS . dtsx file.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the ManagedDTS assembly as follows:

#add ManagedDTS assembly

Add-Type -AssemblyName "Microsoft.SglServer.ManagedDTS,
Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080
ccol"

3. Add the following script and run:
Sserver = "KERRIGAN"

#create new app
Sapp = New-Object "Microsoft.SglServer.Dts.Runtime.Application"

#specify package to be deployed
$dtsx = "C:\SSIS\Customer Package.dtsx"
Spackage = S$app.LoadPackage ($dtsx, $null)

#where are we going to deploy?

428

http://msdn.microsoft.com/en-us/library/ms211665
http://msdn.microsoft.com/en-us/library/ms211665

Chapter 8

$SSISPackageStorePath = "\File System\QueryWorks"
$destinationName = "$ (3SSISPackageStorePath)\$ ($package.Name)"

#save to the package store
Sapp.SaveToDtsServer (S$Spackage, S$Sevents, $destinationName, S$server)

When done, log in to the SSIS instance in Management Studio, and confirm that the
package has been deployed:

= [y KERRIGAN (Integration Services 11.0.2100 - KERRIGAN Administrator]
.3 Running Packages
= [J Stored Packages
= 3 File System

E 3 QueryWorks
| ;4 Customer Package ‘/

[QueryWorks 2012-May-18-0422FM
[MSDE

Deploying a . dtsx file to the package store in the filesystem, or the msdb database, is
considered a legacy way of deploying SSIS packages in SQL Server 2012. This is how
referred to as a Package Deployment model.

See the Deploying an ISPAC file to SSISDB recipe for more details
s on deploying SSIS projects in SQL Server 2012.

Although this may be considered legacy already, this may still be the preferred way to deploy
packages in some environments for a while.
To deploy programmatically, we must first create a handle to the ManagedDTS assembly:

#add ManagedDTS assembly

Add-Type -AssemblyName "Microsoft.SglServer.ManagedDTS,
Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc9ol™"

After loading the ManagedDTS object, we need to create an Application object:

$server = "KERRIGAN"

#ficreate new app
Sapp = New-Object "Microsoft.SglServer.Dts.Runtime.Application"

Business Intelligence

We then need to load the SSIS . dtsx package into a variable using the LoadPackage
method of the DTS Application object. We will load the package from the C:\SSIS
folder where we saved the Customer Package.dtsx package:

#deploy a package
$dtsx = "C:\SSIS\Customer Package.dtsx"
Spackage = S$app.LoadPackage ($dtsx, $null)

We also need to specify where the package is going to be deployed. If the package is to be
deployed to the File System, we prefix the path with \File System); if to the database, we
prefix \MSDB\.

#where are we going to deploy?
$SSISPackageStorePath = "\File System\QueryWorks"
$destinationName = "$ ($SSISPackageStorePath)\$ ($package.Name)"

#save to the package store
Sapp.SaveToDtsServer (Spackage, $events, $destinationName, S$server)

If you want to save to the MSDB folder, you will have to use the SaveToSQLServer method
instead of the SaveToDtsServer method.

» The Deploying an ISPAC file to SSISDB recipe
» Check out the Application.LoadPackage method documentation from MSDN:

http://msdn.microsoft.com/en-us/library/ms188550.aspx

Executing an SSIS package stored in the

package store or File System

In this recipe, we will execute an SSIS package using PowerShell.

Getting ready

In our recipe, we will execute Customer Package, which is saved in the package store,
and we will also execute the C:\SSIS\SamplePackage.dtsx file—also included in the
downloadable files for this chapter—directly from the filesystem.

Alternatively, you can locate an available SSIS package in your system that you want to
execute instead. Identify whether this package is stored in the filesystem, or in the SSIS
package store.

430

http://msdn.microsoft.com/en-us/library/ms188550.aspx
http://msdn.microsoft.com/en-us/library/ms188550.aspx

Chapter 8

How to do it...

Let's explore the code required to execute an SSIS package programmatically using
PowerShell.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the ManagedDTS assembly as follows:

#add ManagedDTS assembly

Add-Type -AssemblyName "Microsoft.SglServer.ManagedDTS,
Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080
ccol"

3. Add the following script and run:
Sserver = "KERRIGAN"

#icreate new app we'll use for SSIS
Sapp = New-Object "Microsoft.SglServer.Dts.Runtime.Application™

#texecute package in SSIS Package Store

$packagePath = "\File System\QueryWorks\Customer Package"
Spackage = S$app.LoadFromDtsServer ($SpackagePath, $server, $null)
Spackage.Execute ()

#fexecute package saved in filesystem
$packagePath = "C:\SSIS\SamplePackage.dtsx"
Spackage = S$app.LoadPackage ($packagePath, $null)
Spackage.Execute ()

In SQL Server 2012, a new method of storing is introduced to SSIS. Using the Project
Deployment model, SSIS packages are deployed with their corresponding parameters
and environments to the SSISDB catalog. SQL Server 2012 still supports the legacy
way of storing packages, however—which is through the filesystem, or package store.

The default package store is in:
<SQL Server Install Directory>\110\DTS\Packages
The first step is to load the ManagedDTS assembly, and create an Application object:

#add ManagedDTS assembly

Add-Type -AssemblyName "Microsoft.SglServer.ManagedDTS,
Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc9ol™"

431

Business Intelligence

#icreate new app we'll use for SSIS
Sapp = New-Object "Microsoft.SglServer.Dts.Runtime.Application™

To load a package stored in the package store, we need to use the LoadFromDtsServer
method of the DTS Application object and supply it with three parameters—the path to
the package relative to the File System, the server name, and a third parameter for
events, which we will leave null.

$packagePath = "\File System\QueryWorks\Customer Package"
Spackage = S$Sapp.LoadFromDtsServer ($SpackagePath, $server, $null)

If a package is stored in the filesystem, we have to use the method LoadPackage of the DTS
Application object, and pass to it the path of the package:

$packagePath = "C:\SSIS\SamplePackage.dtsx"
Spackage = S$Sapp.LoadPackage ($packagePath, $null)

If you still have packages deployed in msdb, you can also execute these packages by using the
LoadFromSglServer method of the DTS Application object:

$packagePath = "\MSDB\SamplePackage"
Spackage = S$Sapp.LoadFromSglServer ($packagePath, $server, $null, $null,
Snull)

Spackage.Execute ()

There's more...

Before a package can be executed, it must be loaded first. Check out different methods to
load an SSIS package:

» LoadFromSglServer:
http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
dts.runtime.application.loadfromsglserver.aspx

» LoadFromDtsServer:
http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
dts.runtime.application.loadfromdtsserver.aspx

» LoadPackage

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
dts.runtime.application.loadpackage.aspx

» The Executing an SSIS package stored in SSISDB recipe

432

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadfromsqlserver.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadfromsqlserver.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadfromsqlserver.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadfromdtsserver.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadfromdtsserver.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadfromdtsserver.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadpackage.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadpackage.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadpackage.aspx

Chapter 8

Downloading an SSIS package to a file

This recipe will download an SSIS package back to a . dtsx file.

Getting ready

Locate a package stored in the package store that you want to download to the filesystem.
Note the path to this package.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the ManagedDTS assembly as follows:

#add ManagedDTS assembly

Add-Type -AssemblyName "Microsoft.SglServer.ManagedDTS,
Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080
ccol"

3. Add the following script and run:

$server = "KERRIGAN"

#create new app
Sapp = New-Object "Microsoft.SglServer.Dts.Runtime.Application"

Stimestamp = Get-Date -format "yyyy-MMM-dd-hhmmtt"

$destinationFolder = "C:\SSIS"
SpackageToDownload = "Customer Package"
SpackageParentPath = "\File System\QueryWorks"

#download the specified package
#there we're dealing with a package in
#the SSIS Package store
$app.GetDtsServerPackageInfos ($packageParentPath, $server) |
Where-Object Flags -eq "Package" |
ForEach-Object ({
$package = $_
$SpackagePath = "$ (Spackage.Folder) \$ ($Spackage.Name)"

Business Intelligence

#icheck if this package does exist in the Package Store
if (Sapp.ExistsOnDtsServer (SpackagePath, $server))

{

$fileName = Join-Path $destinationFolder "S$ ($package.
Name) $(Stimestamp) .dtsx"

SnewPackage = Sapp.LoadFromDtsServer ($packagePath,
Sserver, Snull)

Sapp.SaveToXml ($fileName, SnewPackage, $null)

}

The first step is to load the ManagedDTS assembly and create an application object:

#add ManagedDTS assembly
Add-Type -AssemblyName "Microsoft.SglServer.ManagedDTS,
Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc9ol™"

Sserver = "KERRIGAN"

#create new app
Sapp = New-Object "Microsoft.SglServer.Dts.Runtime.Application™

We will also define our variables for timestamp, destination folder, and which package we
want to download:

Stimestamp = Get-Date -format "yyyy-MMM-dd-hhmmtt"

$destinationFolder = "C:\SSIS"
SpackageToDownload = "Customer Package"
$packageParentPath = "\File System\QueryWorks"

We then retrieve all packages using the GetDtsServerPackageInfos method of the DTS
application object:

$app.GetDtsServerPackageInfos ($packageParentPath, $server) |
Where-Object Flags -eq "Package" |
ForEach-Object ({

For each package, we check if this matches the package we wanted to download. If it does,
we can use the LoadFromDtsServer method to load the package, and use the SaveToXml
method to save the package back to the filesystem. Remember that a . dtsx file is simply an
XML file.

ForEach-Object ({
$package = $_

Chapter 8

$packagePath = "$ ($package.Folder) \$ ($package.Name)"

#icheck if this package does exist in the Package Store

if ($app.ExistsOnDtsServer ($packagePath, $server))

{
sfileName =
Name) $(Stimestamp) .dtsx"

Join-Path $destinationFolder "$ ($package.

$newPackage = $app.LoadFromDtsServer ($packagePath,

$server, $null)

$app.SaveToXml ($fileName,

}

$newPackage, $null)

Note that we constructed a timestamped filename for our recipe; you can definitely change
this filename to whatever suits your requirements.

See also

» The Deploying an SSIS package to a package store recipe

» Learn more about:

O Application.SaveToXml:

http://msdn.microsoft.

sglserver.dts.runtime

0 LoadFromDtsServer:

http://msdn.microsoft.
sglserver.dts.runtime.

com/en-us/library/microsoft.

.application.savetoxml.aspx

com/en-us/library/microsoft.
application.loadfromdtsserver.aspx

Creating an SSISDB catalog

In this recipe, we will create an SSISDB catalog.

Getting ready

To create an SSISDB catalog, we must first enable SQLCLR on the instance. Log in to SQL
Server Management Studio, and use the system stored procedure sp_configure to enable

CLR. Execute the following T-SQL script:

sp_configure 'clr enabled', 1
GO

RECONFIGURE

GO

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.savetoxml.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.savetoxml.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.savetoxml.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadfromdtsserver.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadfromdtsserver.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadfromdtsserver.aspx

Business Intelligence

How to do it...

Let's step through creating SSISDB programmatically.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module as follows:
Import-Module SQLPS -DisableNameChecking

3. Loadthe IntegrationServices assembly as follows

Add-Type -AssemblyName "Microsoft.SglServer.Management.
IntegrationServices, Version=11.0.0.0, Culture=neutral,
PublicKeyToken=89845dcd8080cc9ol"

4. Add the following script and run:

SinstanceName = "KERRIGAN"

SconnectionString = "Data Source=$instanceName;Initial
Catalog=master; Integrated Security=SSPI"

Sconn = New-Object System.Data.SglClient.SglConnection
SconnectionString

$SSISServer = New-Object Microsoft.SglServer.Management.
IntegrationServices.IntegrationServices $conn

if (1$SSISServer.Catalogs["SSISDB"])
{
#iconstructor accepts three (3) parameters:
#parent, name, password
$SSISDB = New-Object Microsoft.SglServer.Management.
IntegrationServices.Catalog ($SSISServer, "SSISDB", "P@ssword")
$SSSISDB.Create ()

}

SQL Server 2012 introduces SSIS catalog for Integration Services. The catalog is implemented
as a database called SSISDB that stores Integration Services objects (projects, packages, and
parameters) and logs when projects are deployed using the new Project Deployment model.
This database is accessible from SQL Server Management Studio and can be queried like any
regular database:

436

Chapter 8

Object Explorer b

Connect~ & 3 m [#] Q
= Lﬂ KERRIGAM (SQL Server 11.0,2100 - KERRIGAMN WAdmin
[Databases
1 Security
[Server Objects
[Replication
3 AlwaysOn High Availability
1 Management
= 3 Integration Services Catalogs f
[ssIsDB
ﬁ% S0L Server Agent

To create SSISDB programmatically, we must first load the IntegrationServices assembly.
This assembly exposes the SSIS Catalog Managed Object Model to allow programmatic access
to the new SSIS objects:

Add-Type -AssemblyName "Microsoft.SglServer.Management.
IntegrationServices, Version=11.0.0.0, Culture=neutral,
PublicKeyToken=89845dcd8080cc9ol"

To figure out the version and public key token, you can check out C:\Windows\assembly,
and check the properties of this assembly:

T - 3
Disk (C:) ~ Windows - assembly 1#1 Microsoft.5qlServer.Managemen _.|_

General | \erson |

ibrary » Share with + New folder

Assembly Mame / @
3@Microsoft. SqlServer.Management. HelpViewer /
3@Microsoft. SqlServer.Management. IntegrationServices

3&!Microsoft. SqlServer.Management, IntegrationServicesEnur

3@1Min:rosoft.5ql5erver.Management.MultiServerConnection e e
aﬁ'lMiUDsoft.SqISErver.Management.MulﬁServerConnech’on Processor Architecture: MSIL
E@Microsoft.SqlServer.Management.RegisheredServers

E@Microsoft.SqlServer.Management.RegisheredServers Last Modified: 4/29/2012 2:43:49 PM

4EE] Mi ft.5glS M, t.5dk. Sfc

& !croso qlServer. Managemen - R
:ﬁlMlcrosoﬂ:.SqlServer.Management.Sdk.Sf‘c

3@Min:rosoft.SqlServer.Management.SmoMetadataF‘rovider Version: 11.0.0.0
3&!Min:rosoft.SqlServer.Management.SmoMetadataF‘rovider i /
s@IMicrosoft.5qlServer. Management. SqlParser Public Key Token: 89845dcd8080cca1

=

Business Intelligence

First, we need to create a SQL.Connection object, which we will need to pass to the
IntegrationServices constructor:

$instanceName = "KERRIGAN"

SconnectionString = "Data Source=$instanceName;Initial
Catalog=master; Integrated Security=SSPI;"

Sconn = New-Object System.Data.SglClient.SglConnection
SconnectionString

We then need to create an IntegrationServices object:

$SSISServer = New-Object Microsoft.SglServer.Management.
IntegrationServices.IntegrationServices $conn

To create an SSISDB catalog, we create a new Catalog object, which accepts three
parameters: IntegrationServices server object, name of the catalog (SSISDB),
and a password:

if (1$SSISServer.Catalogs ["SSISDB"])
{
#constructor accepts three (3) parameters:
#parent, name, password
$SSISDB = New-Object Microsoft.SglServer.Management.
IntegrationServices.Catalog ($SSISServer, "SSISDB", "P@ssword")
$SSISDB.Create ()

See also

I

» The Deploying an ISPAC file to SSISDB recipe
» Check out additional information about SQL Server 2012 SSIS:
http://msdn.microsoft.com/en-us/library/gg471508.aspx

» Learn more about SSISDB catalog from MSDN:

http://msdn.microsoft.com/en-us/library/hh479588.aspx

» See the properties and methods for the new IntegrationServices assembly:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.

management . integrationservices (v=sgl.110) .aspx

438

http://msdn.microsoft.com/en-us/library/gg471508.aspx
http://msdn.microsoft.com/en-us/library/gg471508.aspx
http://msdn.microsoft.com/en-us/library/hh479588.aspx
http://msdn.microsoft.com/en-us/library/hh479588.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices(v=sql.110).aspx

Chapter 8

Creating an SSISDB folder

In this recipe, we will create a folder in the SSTISDB catalog.

Getting ready

In this recipe, we assume that the SSTSDB catalog has been created. We will create a folder
called QueryWorks inside the SSISDB catalog.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Loadthe IntegrationServices assembly:
Add-Type -AssemblyName "Microsoft.SglServer.Management.

IntegrationServices, Version=11.0.0.0, Culture=neutral,
PublicKeyToken=89845dcd8080cc9ol"

4. Add the following script and run:

$instanceName = "KERRIGAN"
SconnectionString = "Data Source=$instanceName;Initial
Catalog=master; Integrated Security=SSPI"

Sconn = New-Object System.Data.SglClient.SglConnection
SconnectionString

$SSISServer = New-Object Microsoft.SglServer.Management.
IntegrationServices.IntegrationServices $conn
$SSISDB = $SSISServer.Catalogs ["SSISDB"]

#create QueryWorks catalog folder here

$folderName = "QueryWorks"

$folderDescription = "New SSISDB folder"

$SSISDBFolder = New-Object Microsoft.SglServer.Management.
IntegrationServices.CatalogFolder ($SSISDB, $folderName,
$folderDescription)

$SSISDBFolder.Create ()

Business Intelligence

When done, log in to Management Studio and connect to your database engine.
Expand Integration Services Catalogs, and check that the folder has been created
under the SSISDB node:

Chject Explorer hd

Connect~ 3 34 m " E £
= Lﬂ KERRIGAM (SOL Server 11.0,2100 - KERRIGAMYAdminid
[Databases
[Security
3 Server Objects
[Replication
[AlwaysOn High Availability
[Management
= [Integration Services Catalogs

=l L4 SSISDB
3 QueryWorks f

A folder in an SSISDB catalog can hold multiple projects and environments.

To create a folder inside SSISDB, also called a catalog folder, we must first get a handle to
SSISDB. The core code required to do this is is as follows:

$SSISServer = New-Object Microsoft.SglServer.Management.
IntegrationServices.IntegrationServices $conn

$SSISDB = $SSISServer.Catalogs["SSISDB"]

Once we have the SSISDB handle, creating the folder is straightforward. It requires creating
a new CatalogFolder object. The constructor takes in the SSISDB object, the name of the
catalog folder, and the description:

#icreate QueryWorks catalog folder here
$folderName = "QueryWorks"
$folderDescription = "New SSISDB folder"

$SSISDBFolder = New-Object Microsoft.SglServer.Management.
IntegrationServices.CatalogFolder ($SSISDB, S$folderName,
$folderDescription)

The Create () method will persist the catalog folder in SSISDB:

$SSISDBFolder.Create ()

440

Chapter 8

See also

» The Creating an SSISDB catalog recipe
» The Deploying an ISPAC file to SSISDB recipe
» Check out the properties and methods supported by the CatalogFolder class:

http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management .integrationservices.catalogfolder.aspx

Deploying an ISPAC file to SSISDB

You will see how to deploy an ISPAC file to SSISDB.

Getting ready

Save the Customer Package Project.ispac file provided with the sample code of this
book to the C:\ss1s folder. Alternatively, if you have an available ISPAC file that you want to
use, change the $ispacFilePath variable's value to reflect your file.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Loadthe IntegrationServices assembly:

Add-Type -AssemblyName "Microsoft.SglServer.Management.
IntegrationServices, Version=11.0.0.0, Culture=neutral,
PublicKeyToken=89845dcd8080cc9ol"

4. Add the following script and run:

$instanceName = "KERRIGAN"

SconnectionString = "Data Source=$instanceName;Initial
Catalog=master; Integrated Security=SSPI"

Sconn = New-Object System.Data.SglClient.SglConnection
SconnectionString

$SSISServer = New-Object Microsoft.SglServer.Management.
IntegrationServices.IntegrationServices $conn

$SSISDB = $SSISServer.Catalogs["SSISDB"]

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices.catalogfolder.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices.catalogfolder.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices.catalogfolder.aspx

Business Intelligence

$SSISDBFolderName = "QueryWorks"
$SSISDBFolder = $SSISDB.Folders[$SSISDBFolderName]

$ispacFilePath = "C:\SSIS\Customer Package Project.ispac"
[byte[]] Sispac = [System.IO.Filel::ReadAllBytes ($ispacFilePath)

$SSISDBFolder.DeployProject ("Customer Package Project", $ispac)

When done, log in to Management Studio and expand Integration Services
Catalogs. Under SSISDB, open the QueryWorks folder, and confirm that Customer
Package Project has been deployed:

Object Explorer b
Conmect~ 33 3 m 7 [&] L5
=l Lﬂ KERRIGAM (SQL Server 11.0,2100 - KERRIGAM WAdminis
[Databases
1 Security
[Server Objects
3 Replication
3 AlwaysOn High Availability
[Management
=l 3 Integration Services Catalogs
= [551508
=l 3 QueryWorks

= 3 Projects
i.ﬂ Customer Package Project (

1 Environments
[SQL Server Agent

SQL Server 2012 Integration Services supports two deployment models: Package Deployment
model and Project Deployment model. The Package Deployment model is the older, legacy
way of deploying, where packages are deployed as standalone entities. The newer Project
Deployment model is the default mode supported when you create a new SSIS project in

SQL Server Data Tools (SSDT), previously known as Business Intelligence Development
Studio (BIDS).

In the Package Deployment model, everything needed to deploy a project is packaged up into
a single file with an . ispac extension. This file is created when you deploy the SSIS 2012
project. Although it appears to be a single file, you will discover that this is a series of files that
have been compressed. Simply change the . ispac extension to . zip, and extract the file.
You should see something similar to the files shown in the following screenshot:

442

Chapter 8

| . = Computer - Local Disk (C:) » S5IS - Customer Package

™ Indudeinlbrary * Share with + New folder

Mame = Date modified Type

|| @Project.manifest 5162012 1:05PM MAMIFEST File

|£] [Content_Types].xml 5162012 1:05PM ¥ML Document

_1 Package.dtsx 5162012 1:05PM Integration Services Package
|_| Project.params 5162012 1:05PM PARAMS File

A package manifest has been created when the SSIS was built in SQL Server Data Tools (SSDT),
in addition to the package files and parameter file.

To deploy the . ispac file programmatically using PowerShell and the new SSIS object model,
we first need to load the IntegrationServices assembly, and create a handle to the
IntegrationServices object:

Add-Type -AssemblyName "Microsoft.SglServer.Management.
IntegrationServices, Version=11.0.0.0, Culture=neutral, PublicKeyToken

=89845dcd8080cc9ol"
$instanceName = "KERRIGAN"
SconnectionString = "Data Source=$instanceName;Initial

Catalog=master; Integrated Security=SSPI"

Sconn = New-Object System.Data.SglClient.SglConnection
SconnectionString

$SSISServer = New-Object Microsoft.SglServer.Management.
IntegrationServices.IntegrationServices $conn

The next step is to get a handle to the folder where the ISPAC file will be deployed. This means
we need to get a handle to each object in the hierarchy that leads to the folder, that is, create
a handle to SSISDB, and then to the folder:

$SSISDB = $SSISServer.Catalogs["SSISDB"]

$SSISDBFolderName = "QueryWorks"
$SSISDBFolder = $SSISDB.Folders[$SSISDBFolderName]

Once we have a handle to the folder, we need to read the byte content of the ISPAC file, and

use the DeployProject method of the SSISDBFolder object available with the catalog
folder object:

$ispacFilePath = "C:\SSIS\Customer Package Project.ispac"
[byte[]] S$Sispac = [System.IO.File]::ReadAllBytes($SispacFilePath)
$SSISDBFolder.DeployProject ("Customer Package Project", $ispac)

Business Intelligence

See also

» The Creating an SSISDB catalog recipe
» The Creating an SSISDB folder recipe

» To learn more about the specification, check out "[MS-ISPAC]: Integration Services
Project Deployment File Format Structure Specification":

http://msdn.microsoft.com/en-us/library/££952821 (v=sgql.110)

» See the properties and methods for the new IntegrationServices assembly:

http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management .integrationservices (v=sgl.110) .aspx

Executing an SSIS package stored in

SSISDB

In this recipe, we execute a package stored in SSISDB.

Getting ready

In this recipe, we execute the package that comes with the Customer Package Project
that was deployed in the Deploying an ISPAC File to SSISDB recipe. Alternatively, replace the
variables for folder, project, and package names.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module as follows:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

3. Loadthe IntegrationServices assembly:

Add-Type -AssemblyName "Microsoft.SglServer.Management.
IntegrationServices, Version=11.0.0.0, Culture=neutral,
PublicKeyToken=89845dcd8080cc9ol"

444

http://msdn.microsoft.com/en-us/library/ff952821(v=sql.110)
http://msdn.microsoft.com/en-us/library/ff952821(v=sql.110)
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices(v=sql.110).aspx

Chapter 8

4. Add the following script and run:

$instanceName = "KERRIGAN"

SconnectionString = "Data Source=$instanceName;Initial
Catalog=master; Integrated Security=SSPI;"

Sconn = New-Object System.Data.SglClient.SglConnection $constr

$SSISServer = New-Object Microsoft.SglServer.Management.
IntegrationServices.IntegrationServices $conn

$SSISDB = $SSISServer.Catalogs ["SSISDB"]

$SSISDBFolderName = "QueryWorks"

$SSISDBFolder = $SSISDB.Folders[$SSISDBFolderName]
SprojectName= "Customer Package Project"

SpackageName= "Package.dtsx"
$SSISDBFolder.Projects [$projectName] . Packages [$SpackageName] .
Execute ($false, S$null)

Once the script finishes, it will return the process ID of the execution.

5. Confirm this process ID against the executions of the report:
1. Connect to Management Studio.
2. Go to Integration Services package.
3. Right-click on the package you executed through the script.
4. Go to Reports | Standard Reports | All Executions:

Configure...
Execute...

Validate. ..

Start PowerShell

Find Invalid Objects

| Reports 3 || Standard Reports r || All Executions

Refresh Custom Reports... All Validations

Business Intelligence

You should see the All Executions report rendered. Confirm that the ID
returned by the script is in the report. You can also check the execution
start time (not shown in the screenshot, but is in the third rightmost
column of the report):

&=

All Executions
on KERRIGAN at 5/17/2012 10:22:35 PM
This report provides information about the Integration Services package executions that have been performed on the connected SGL Server instance.
“F Fitter: Start time range: 5/11/2012 - 5/17/2012; Status: All; (4 more)
Execution Information
Failed Running Succeeded Others
D %+ Status 3 Report Folder Name 2 Project Name : Package Name 2
5 Succeeded Qverview All Messages Execution QueryWorks Customer Package Project Package dtsx
Performance
8 Succeeded Overview All Messages Execution QueryWorks Customer Package Project Package dsx
Performance
7 Succeeded Qverview All Messages Execution QueryWorks Customer Package Project Package dtsx
Performance
& Succeeded Overview All Messages Execution QueryWorks Customer Package Project Package dsx
Performance

To execute a package stored in the SSISDB catalog, we need to get a handle to the package
first. To get a handle to the package, we must first get to the SSISDB catalog:

SconnectionString = "Data Source=$instanceName;Initial
Catalog=master;Integrated Security=SSPI;"
Sconn = New-Object System.Data.SglClient.SglConnection S$constr

$SSISServer = New-Object Microsoft.SglServer.Management.
IntegrationServices.IntegrationServices $conn

$SSISDB = $SSISServer.Catalogs["SSISDB"]
We also need to have access to the folder where the package is saved:

$SSISDBFolderName = "QueryWorks"
$SSISDBFolder = $SSISDB.Folders[$SSISDBFolderName]

To execute, we must trace where the package is and invoke the Execute method
of the Package object. The method accepts two parameters: a Boolean value for
use32RuntimeOné64, and EnvironmentReference

446

Chapter 8

SprojectName= "Customer Package Project"
SpackageName= "Package.dtsx"

$SSISDBFolder.Projects [SprojectName] . Packages [$packageName] .
Execute ($false, S$Snull)

This method returns the process ID of the execution.

See also

» The Executing an SSIS package stored in the package store or File System recipe
» Check out these MSDN articles related to PackageInfo:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
management .integrationservices.packageinfo.aspx

Listing SSAS cmdlets

This recipe lists the new SSAS cmdlets in SQL Server 2012.

How to do it...

Let's explore the code required to list the SSAS cmdlets.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the following script and run:

Get-Command -Module SQLASCmdlets

This should give a result similar to this:

PS SQLSERVER:\> Get-Command -Module SQLASCmdlets

CommandType Name ModuleName
Cmdlet Add-RoleMember SQLASCMDLETS
Cmdlet Backup-AsDatabase SQLASCMDLETS
cmdlet Invoke-Ascmd SQLASCMDLETS
Cmdlet Invoke-ProcessCube SQLASCMDLETS
Cmdlet Invoke-ProcessDimension SQLASCMDLETS
cmdlet Invoke-ProcessPartition SQLASCMDLETS
cmdlet Merge-Partition SQLASCMDLETS
cmdlet New-RestoreFolder SQLASCMDLETS
cmdlet New-RestoreLocation SQLASCMDLETS
Cmdlet Remove-RoleMember SQLASCMDLETS
cmdlet Restore-AsDatabase SQLASCMDLETS

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices.packageinfo.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices.packageinfo.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices.packageinfo.aspx

Business Intelligence

SQL Server Analysis Services (SSAS) gets some PowerShell love in SQL Server 2012. You can
import the SQLASCMDLETS module to start using the new cmdlets.

To list the new AS cmdlets, simply use the Get - Command as follows:
Get-Command -Module SQLASCMDLETS

You will notice that some of the common SSAS tasks have been wrapped in cmdlets, such as
Backup-ASDatabase, Restore-ASDatabase, Invoke-ASCmd, Invoke-ProcessCube
and the like.

See also

» The Listing SSAS instance properties recipe
» Check out these MSDN articles related to:
o Analysis Services PowerShell:

http://msdn.microsoft.com/en-us/library/hh213141.aspx

o Analysis Services PowerShell Reference:

http://msdn.microsoft.com/en-us/library/hh758425.aspx

Listing SSAS instance properties

We will list SSAS instance properties in this recipe.

How to do it...

Let's explore the code required to list SSAS instance properties.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module as follows:
Import-Module SQLASCMDLETS -DisableNameChecking

3. Add the following script and run:

#Connect to your Analysis Services server
$SSASServer = New-Object Microsoft.AnalysisServices.Server

SinstanceName = "KERRIGAN"
$SSASServer.connect (SinstanceName)

448

http://msdn.microsoft.com/en-us/library/hh213141.aspx
http://msdn.microsoft.com/en-us/library/hh213141.aspx
http://msdn.microsoft.com/en-us/library/hh758425.aspx
http://msdn.microsoft.com/en-us/library/hh758425.aspx

Chapter 8

#get all properties
$SSASServer | Select *

You should see a result similar to this:

ConnectionString : KERRIGAN 3
ConnectionInfo : Microsoft.AnalysisServices.ConnectionInfo
SessionID : CEVB36GE7-4F45-421B-B22E-E53B31129472
Capturexm] : False
CapturelLog S
Connected : True
SessionTrace : Microsoft.AnalysisServices.SessionTrace
Version : 11.0.2100.60
Edition : Developeréd
EditionID : 2176971986
ProductLevel : CTP
Databases : {sampleDwW}
Assemblies : {System, EXCELXLINTERNAL, VBAMDXINTERNAL,
Traces : {FlightRecorder?}
Roles : {administrators?}
ServerProperties : {DataDir, TempDir, LogDir, BackupDir...}
ProductName : Microsoft SOL Server Analysis Services
ServerMode : Multidimensional

ed e

To get SSAS instance properties, we first need to load the SQLASCMDLETS module:
Import-Module SQLASCMDLETS -DisableNameChecking
We can then create an Analysis Server object and connect to our instance:

#Connect to your Analysis Services server
$SSASServer = New-Object Microsoft.AnalysisServices.Server

SinstanceName = "KERRIGAN"
$SSASServer.connect (SinstanceName)

Once we get a handle to our SSAS instance, we can display its properties:

#get all properties
$SSASServer | Select *

Note that in SQL Server 2012, there are two flavors of Analysis Services: multidimensional
and tabular. You can identify this by checking the ServerMode properties.

Business Intelligence

See also

» The Listing SSAS cmdlets recipe
» Check out these MSDN articles related to SQL Server Analysis Services class:

http://msdn.microsoft.com/en-us/library/microsoft.
analysisservices.server.aspx

Backing up an SSAS database

In this recipe, we will create an SSAS database backup.

Getting ready

Choose an SSAS database you want to back up, and replace the -Name parameter in the recipe.
Ensure that you are running PowerShell with administrator privileges to the SSAS instance.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQLPS module as follows:

#import SQLASCMDLETS module
Import-Module SQLASCMDLETS -DisableNameChecking

3. Add the following script and run:
$instanceName = "KERRIGAN"
Sbackupfile = "C:\Temp\AWDW.abf"

Backup-ASDatabase -BackupFile sbackupfile -Name "SampleDW" -Server
SinstanceName -AllowOverwrite -ApplyCompression

The Backup-ASDatabase cmdlet allows multidimensional or tabular SSAS databases to be
backed up to a file. In our recipe, we chose to do a compressed backup for the SampleDwW
SSAS database to an Analysis Services Backup file (. abf).

$instanceName = "KERRIGAN"
Sbackupfile = "C:\Temp\AWDW.abf"

Backup-ASDatabase -BackupFile sbackupfile -Name "SampleDW" -Server
SinstanceName -AllowOverwrite -ApplyCompression

450

http://msdn.microsoft.com/en-us/library/microsoft.analysisservices.server.aspx
http://msdn.microsoft.com/en-us/library/microsoft.analysisservices.server.aspx
http://msdn.microsoft.com/en-us/library/microsoft.analysisservices.server.aspx

Chapter 8

Other switches that can be set using the Backup-ASDatabase cmdlet are:

» -BackupRemotePartitions <SwitchParameters>

» -FilePassword <SecureStrings>

» -Locations <Microsoft.AnalysisServices.BackupLocation[]>
» -Server <strings

» -Credential <PSCredentials>

See also

» The Restoring an SSAS database recipe
» Learn more about the Backup-ASDatabase cmdlet:

http://msdn.microsoft.com/en-us/library/hh479574 .aspx

Restoring an SSAS database

You will see how to restore an SSAS database in this recipe.

Getting ready

Locate your SSAS backup file, and replace the backup file parameter with the location of
your file.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQLASCMDLETS module as follows:

#import SQLASCMDLETS module
Import-Module SQLASCMDLETS -DisableNameChecking

3. Add the following script and run:

SinstanceName = "KERRIGAN"
$backupfile = "C:\Temp\AWDW.abf"

Restore-ASDatabase -RestoreFile S$backupfile -Server S$instanceName
-Name "SampleDW" -AllowOverwrite

http://msdn.microsoft.com/en-us/library/hh479574.aspx
http://msdn.microsoft.com/en-us/library/hh479574.aspx

Business Intelligence

The Restore-ASDatabase cmdlet allows multidimensional or tabular SSAS databases to
be restored when provided with a backup file:

SinstanceName = "KERRIGAN"
$backupfile = "C:\Temp\AWDW.abf"

Restore-ASDatabase -RestoreFile S$backupfile -Server S$instanceName
-Name "SampleDW" -AllowOverwrite

See also

» The Backing up an SSAS database recipe
» Learn more about the Restore-ASDatabase cmdlet:

http://msdn.microsoft.com/en-us/library/hh510169.aspx

Processing an SSAS cube

In this recipe, we will process an SSAS cube.

Getting ready

Choose a cube that is readily available in your SSAS instance.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQLASCMDLETS module as follows:

#import SQL Server module
Import-Module SQLASCMDLETS -DisableNameChecking

3. Add the following script and run:

$instanceName = "KERRIGAN"

Invoke-ProcessCube -Name "AW" -Server S$instanceName -Database
"SampleDW" -ProcessType ([Microsoft.AnalysisServices.
ProcessTypel] : : ProcessFull)

452

http://msdn.microsoft.com/en-us/library/hh510169.aspx
http://msdn.microsoft.com/en-us/library/hh510169.aspx

To check that the cube has been processed:

Chapter 8

1. Go to Management Studio and connect to SQL Server Analysis Services.

2. Right-click on the cube you've just processed and go to Properties:

Dbject Explorer

= 0

Comect~ 3 = 7 (2] 5

= [Databases
=l |y SampleDw

= 3 Cubes
e
2 Dimensit
[Mining £
[Roles
[Assemb
[Assemblies

1 Data Sources
[d Data Source Views

=l [} KERRIGAN (Microsoft Analysis Server 11.0.

Browse

Script Cube as

Process

Reports

Delete

Refresh
Properties

3. Inthe General section, check the Last Processed value. It should be updated
to when the script finished executing, as shown in the following screenshot:

f Cube Properties - AW

Selel:ta pag S Script + L"j Help

12 General

% Proactive Caching
|2 Emor Corfiguration
1% Report Actions

E General

Storage Location
Processing Mode
Script Cache Processing Mode
B Status

Jlale

ol en

| Last Processed

Business Intelligence

Processing, or reprocessing, a cube is a common task that needs to be done in an SSAS
environment on a regular basis. Processing a cube ensures that your cube has the latest
data that has been loaded to the source data warehouse, or any changes to the cube's
structure are in place.

The Invoke-Process cmdlet simplifies this process if you are doing this task
through PowerShell:

Invoke-ProcessCube -Name "AW" -Database "SampleDW" -ProcessType
([Microsoft.AnalysisServices.ProcessType] : : ProcessFull)

All we need to specify is the cube name and the SSAS database where this cube belongs.
Processing cubes requires administrative privileges on the SSAS instance.

There are different processing types that can be specified with the -ProcessType switch,
including ProcessFull, ProcessAdd, and ProcessUpdate. Check out the different
processing options and settings from MSDN:

http://msdn.microsoft.com/en-us/library/msl174774 .aspx

See also

» The Backing up an SSAS database recipe
» The Restoring an SSAS database recipe
» Check out these MSDN articles related to Invoke-ProcessCube cmdlet:

http://msdn.microsoft.com/en-us/library/hh510171.aspx

» To learn more about the different processing options and settings for Analysis Services:

http://msdn.microsoft.com/en-us/library/msl74774 .aspx

http://msdn.microsoft.com/en-us/library/hh510171.aspx
http://msdn.microsoft.com/en-us/library/hh510171.aspx
http://msdn.microsoft.com/en-us/library/ms174774.aspx
http://msdn.microsoft.com/en-us/library/ms174774.aspx

Helpful PowerShell
Snippets

In this chapter, we will cover:

» Documenting PowerShell script for Get-Help
» Getting a timestamp

» Getting additional error messages
» Listing processes

» Getting aliases

» Exporting to CSV and XML

» Using Invoke-Expression

» Testing regular expressions

» Managing folders

» Manipulating files

» Searching for files

» Reading an event log

» Sending e-mail

» Embedding C# code

» Creating an HTML report

» Parsing XML

» Extracting Data from a web service

» Using PowerShell Remoting

Helpful PowerShell Snippets

Introduction

In this chapter, we tackle a variety of recipes that are not SQL Server specific; but you may
find them useful as you work with PowerShell. Often you will need to create files that use a
timestamp, analyze event logs for recent system errors, export a list of processes to CSV or
XML, or even access web services. Here you will find snippets of code that you can use in
existing or new scripts, or whenever you need them.

Documenting PowerShell script for Get-Help

In this recipe, we will use header comments that can be utilized by the Get-Help cmdlet.

How to do it...

In this recipe, we will explore comment-based Help.

4. Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

5. Add the following;:

<#
.SYNOPSIS

Creates a full database backup
.DESCRIPTION

Creates a full database backup using specified instance name
and database name

This will place the backup file to the default backup directory
of the instance
.PARAMETER instanceName

instance where database to be backed up resides
.PARAMETER databaseName

database to be backed up
.EXAMPLE

PS C:\PowerShells> .\Backup-Database.psl -instanceName
"QUERYWORKS\SQLO1" -databaseName "pubs"

456

.EXAMPLE

Chapter 9

PS C:\PowerShell> .\Backup-Database.psl -instance "QUERYWORKS\

SQLO1" -database "pubs"
.NOTES

To get help:
Get-Help .\Backup-Database.psl

#>

param

(
[Parameter (Position=0)]
[alias ("instance")]
[string] $instanceName,
[Parameter (Position=1)]
[alias ("database")]
[string] $databaseName

)

function main

{

#this is just a stub file

cls

#get general help
Get-Help "C:\PowerShell\Backup-Database.psl"

#get examples

Get-Help "C:\PowerShell\Backup-Database.psl" -Examples

Save the script as C: \PowerShell\Backup-Database.psl.
Execute the script from the PowerShell ISE.

Check appendices A and B for executing the script from the
A

PowerShell console.

Helpful PowerShell Snippets

Here is a sample result:

NAME
C:“PowershelT\Backup-Database.psl

SYNOPSIS
Creates a full database backup

SYNTAX
C:\PowershelT\Backup-Database.psl [[-instanceName] <Strin

DESCRIPTION
Creates a full database backup using specified instance n
This will place the backup file to the default backup dir

RELATED LINKS

REMARKS
To see the examples, type: "get-help C:“%PowerShell“\Backup
For more information, type: "get-help C:‘PowerShell‘\Backu

Starting PowerShell V2, if a script or a function has some header comments formatted in a
specific way, these can be displayed when Get -Help is invoked for that function or script.
This is also called comment-based help.

This comment block must be the first section in a script, or must be the first lines in a
function. Once composed, the script or the function name can be passed as a parameter
to Get -Help.

Some of the core keywords of the comment-based help are as follows:

<#
.SYNOPSIS
summary
.DESCRIPTION
Description
.PARAMETER parameterlName
Parameter description
.PARAMETER parameterlName
Parameter description
.EXAMPLE
Usage example; Appears when you use -examples

458

Chapter 9

.EXAMPLE

Usage example; Appears when you use -examples

.NOTES

Additional notes; Appears when you use -full
#>

Additional sections that can be used are as follows:

>

. INPUTS
.OUTPUTS

.LINK

.ROLE
.FUNCTIONALITY

There's more...

>

To find out more on about_Comment_Based_Help, you can use the MSDN and
browse to the following link:

http://msdn.microsoft.com/en-us/library/windows/desktop/
dd819489.aspx

Refer to WTFM: Writing the Fabulous Manual available at:
http://technet.microsoft.com/en-us/magazine/ff458353.aspx

Getting a timestamp

In this recipe, we simply get the system's current timestamp.

How to do it...

This is how we will get the timestamp.

1. Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |

Windows PowerShell.

Add the following script and run it:

Stimestamp = Get-Date -Format "yyyy-MMM-dd-hhmmtt"

#display timestamp
Stimestamp

http://msdn.microsoft.com/en-us/library/windows/desktop/dd819489.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd819489.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd819489.aspx
http://technet.microsoft.com/en-us/magazine/ff458353.aspx
http://technet.microsoft.com/en-us/magazine/ff458353.aspx

Helpful PowerShell Snippets

Following is a sample result:

2012-May-27-0717AM

Often, we find ourselves needing the timestamp to append to different files we create or
modify. To get the timestamp in PowerShell, we simply have to use the Get -Date cmdlet,

which gives the following default format:

To change the format, we can use the -Format switch, which accepts a format string. In our

Sunday, May 27, 2012 7:21:03 AM

recipe, we used the following format: "yyyy-MMM-dd-hhmmt t".

There are a number of standard format strings that return preformatted datetime type, or you
can also compose your own format string. Common format strings, as documented in MSDN

are as follows:

Format Pattern

Description

tt

ss
mm
dd
dddd
hh
HH
dd
MM
MMM
MMMM
Yy
YYYY

AM/PM designator

Seconds with leading zero
Minutes with leading zero

Day of month with leading zero
Full name of the day of the week
12-hour clock with leading zero
24-hour clock with leading zero
Day of month with leading zero
Numeric month with leading zero
Abbreviated month name

Full month name

Two-digit year

Four-digit year

Information on DateTimeFormatInfo class is available at:

>

460

http://msdn.microsoft.com/en-us/library/system.globalization.

datetimeformatinfo.aspx

http://msdn.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.aspx

Chapter 9

» Information on standard Date and Time format strings is available at:

http://msdn.microsoft.com/en-us/library/az4se3kl.aspx

» The Windows PowerShell Tip of the Week - Formatting Dates and Times is available at:

http://technet.microsoft.com/en-us/library/ee692801.aspx

» Information on the MSDN Get-Date is available at:

http://technet.microsoft.com/en-us/library/hh849887

Getting additional error messages

In this recipe, we will learn to display additional error messages.

How to do it...

Let's take a look at how to display more error messages.

1. Open the PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

2. Add the following script and run it:

Clear-Host
$error [0] | Format-List -Force

PowerShell supports some special variables and constants. Some of these display arguments,
user directories, and other settings. The $Serror is an array variable that holds all the error
objects that are encountered in your PowerShell session. To display the last error message,
you can use the following:

S$error [0] | Format-List -Force
To check the number of errors contained in your variable, you can use the following:
Serror.Count

Serror works like a circular buffer. By default, Serror stores the last 256 errors in your
session. If you want to increase the number of error objects the array can store, you can set
the $MaximumErrorCount variable to a new value.

SMaximumErrorCount = 300

http://msdn.microsoft.com/en-us/library/az4se3k1.aspx
http://msdn.microsoft.com/en-us/library/az4se3k1.aspx
http://technet.microsoft.com/en-us/library/ee692801.aspx
http://technet.microsoft.com/en-us/library/ee692801.aspx
http://technet.microsoft.com/en-us/library/hh849887
http://technet.microsoft.com/en-us/library/hh849887

Helpful PowerShell Snippets
Should you want to clear all the errors, you can use the clear method.
Serror.Clear ()

To get more information about variables that are set in your session, you can use the
following command:

Get-Variable |
Select Name, Value, Options |
Format-Table -AutoSize

A partial list of special variables is presented in the following table:

Special Variable Description

S Current pipeline object

Sargs Arguments passed to a function
Serror Stores the last error

Shome User's home directory

Shost Host information

Smatch Regex matches

$SPSHome Install directory of PowerShell
Spid Process ID (PID) of PowerShell process
Spwd Present working directory
Strue Boolean true

sfalse Boolean false

snull Null value

Listing processes

In this recipe, we will list processes in the system.

How to do it...

Let's list processes using PowerShell.

1. Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE

462

Chapter 9

Add the following script and run it:

#list all processes to screen

Get-Process

#list 10 most recently started processes
Get-Process |

Sort -Property StartTime -Descending |

Select Name, StartTime, Path, Responding -First 10

#save processes to a text file
StxtFile = "C:\Temp\processes.txt"
Get-Process |

Out-File -FilePath S$txtFile -Force

notepad $txtFile

#save processes to a csv file,

#and display first five lines in file

ScsvFile = "C:\Temp\processes.csv"

Get-Process |

Export-Csv -Path $csvFile -Force -NoTypeInformation

Get-Content $csvFile -totalCount 5

#save the top 5 CPU-heavy processes that
#start with S to an xml file,

#and display in Internet Explorer
$xmlFile = "C:\Temp\processes.xml"

#note we are using PowerShell V3 Where-Object syntax
Get-Process |

Where-Object ProcessName -like "S*" |

Sort -Property CPU -Descending |

Select Name, CPU -First 5 |

Export-Clixml -path $xmlFile -Force

Set-Alias ie "Senv:programfiles\Internet Explorer\iexplore.exe"

ie $xmlFile

Helpful PowerShell Snippets

In this recipe, we have used the Get - Process cmdlet to display processes in the system.
We explored a few variations in this recipe.

The first example lists all processes.
Get-Process |

The second example is slightly different. We pipe the results of Get - Process, and get
only the 10 most recently started processes. We achieve this by sorting StartTime in
descending order, and selecting only the top 10.

Sort -Property StartTime -Descending |
Select Name, StartTime, Path, Responding -First 10

Note, however, that this will throw some errors because there are system processes that
are not accessible to non-elevated users. Referto http://blogs.technet.com/b/
heyscriptingguy/archive/2010/08/07/weekend-scripter-boot-tracing-
with-windows-powershell.aspx.

The result is shown in the following screenshot:

Sort-Object : Exception getting "StartTime": "Access 1is denied"”
At Tine:3 char:1
+ Sort -Property StartTime -Descending |

B et TSR

+ CategoryInfo : InvalidResult: (System.Diagnostics.Process (Id]

alueInvocationException
+ FullyQualifiedErrorId : ExpressionEvaluation,Microsoft.PowerShell.Comma

Sort-Object : Exception getting "StartTime": "Access 1is denied"”
At Tline:3 char:1
+ Sort -Property StartTime -Descending |

AP ST

+ CategoryInfo : InvalidResult: (System.Diagnostics.Process (Sys
tvalueInvocationException
ullyqualifiedErrorid

ExpressionEyaluation,Micr ft.Powershell.Comma

The results of Get -Process can be piped to other cmdlets and exported to different file
formats, such as text file, CSV file, or XML.

To pipe results to a text file, we can use the out-File cmdlet.

StxtFile = "C:\Temp\processes.txt"

Get-Process |
Out-File -FilePath S$txtFile -Force

notepad $txtFile

464

http://blogs.technet.com/b/heyscriptingguy/archive/2010/08/07/weekend-scripter-boot-tracing-with-windows-powershell.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2010/08/07/weekend-scripter-boot-tracing-with-windows-powershell.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2010/08/07/weekend-scripter-boot-tracing-with-windows-powershell.aspx

Chapter 9

To create a CSV file, we can use the Export-Csv cmdlet. In this sample, we also read back
the first five lines of the CSV file that we just created.

ScsvFile = "C:\Temp\processes.csv"

Get-Process |
Export-Csv -Path $ScsvFile -Force -NoTypeInformation

Get-Content $csvFile -totalCount 5

If you require an XML format, you can achieve that by using the Export-Clixml cmdlet.
In this sample, we also filter for only processes that start with s, and we only get the top
five CPU-heavy processes.

#save the top 5 CPU-heavy processes that
#start with S to an xml file,

#and display in Internet Explorer
$xmlFile = "C:\Temp\processes.xml"

#note we are using PowerShell V3 Where-Object syntax
Get-Process |

Where-Object ProcessName -like "S*" |

Sort -Property CPU -Descending |

Select Name, CPU -First 5 |

Export-Clixml -path $xmlFile -Force

Set-Alias ie "Senv:programfiles\Internet Explorer\iexplore.exe"

ie $xmlFile

The last two lines simply create an alias for Internet Explorer, and then display the XML file.

» Refer to the following link to know more on using the Get-Process Cmdlet:

http://msdn.microsoft.com/en-us/library/eel76855.aspx

» Also, refer to MSDN Get-Process, available at:
http://msdn.microsoft.com/en-us/library/hh849832

See also

» The Exporting to CSV and XML recipe

http://msdn.microsoft.com/en-us/library/ee176855.aspx
http://msdn.microsoft.com/en-us/library/ee176855.aspx
http://msdn.microsoft.com/en-us/library/hh849832
http://msdn.microsoft.com/en-us/library/hh849832

Helpful PowerShell Snippets

Getting aliases

In this recipe, we look at aliases in PowerShell.

How to do it...

Let's check out aliases in PowerShell.

1. Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

2. Add the following script and run it:

#list all aliases
Get-Alias

#get members of Get-Alias
Get-Alias | Get-Member

#list cmdlet that is aliased as dir
Salias:dir

#list cmdlet that is aliased as 1s
Salias:1ls

#get all aliases of Get-ChildItem
Get-Alias -Definition "Get-ChildItem"

The Get-Alias cmdlet returns all PowerShell aliases. PowerShell's building blocks are cmdlets,
and are named using the <vVerb-Noun> convention. For example, to list contents of a directory,
we use Get-ChildItem. There are, however, better-known ways to get this information such as
dir if running the Windows Command Prompt, and 1s if running in a Unix environment. Aliases
allow most well-known commands to be run from within PowerShell. To list all aliases, use the
following;:

#list all aliases

Get-Alias
To get the members of Get -Alias, we can pipe the result of Get-Alias to Get -Member.

Get-Alias | Get-Member

466

Chapter 9

If there is a well-known command, such as dir or 1s that is supported in PowerShell and you
are curious which cmdlet it refers to, you can use the following:

#list cmdlet that is aliased as dir

$alias:dir

#list cmdlet that is aliased as 1ls

$alias:1s
On the other hand, if you want to know all aliases for a cmdlet, you can use the following:

Get-Alias -Definition "Get-ChildItem"

There's more...

For more information on MSDN Get-Alias, refer to:

http://technet.microsoft.com/en-us/library/hh849948

Exporting to CSV and XML

In this recipe, we pipe the results of the Get -Process cmdlet to a CSV and XML file.

How to do it...

Following are the steps to export to CSV and XML:

1. Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

2. Add the following script and run it:

$csvFile = "C:\Temp\sample.csv"

Get-Process |

Export-Csv -path $csvFile -Force -NoTypeInformation
notepad $csvFile

$xmlFile = "C:\Temp\process.xml"
Get-Process |

Export-Clixml -path $xmlFile -Force
notepad $xmlFile

http://technet.microsoft.com/en-us/library/hh849948
http://technet.microsoft.com/en-us/library/hh849948

Helpful PowerShell Snippets

PowerShell provides a few cmdlets that support exporting data to files of different formats.
Export -Csv saves information to a comma-separated value file, and Export -Clixml
exports the piped data to XML.

$csvFile = "C:\Temp\sample.csv"

Get-Process |

Export-Csv -Path $csvFile -Force -NoTypeInformation
notepad $csvFile

$xmlFile = "C:\Temp\process.xml"
Get-Process |

Export-Clixml -Path $xmlFile -Force
notepad $xmlFile

The Export -Csv cmdlet converts each object passed to it from the pipeline into a row in
the resulting CSV file. Although the default delimiter is a comma, this can be changed to
other characters by using the -Delimiter switch. You can also start appending data using
the -Append switch, which was added in PowerShell V3.

The Export-Clixml cmdlet converts data passed to it into XML and saves it to a file.
The resulting XML is similar to what the ConvertTo-Xml cmdlet would return.

There's more...

» Refer to MSDN Export-Csv, available at:
http://msdn.microsoft.com/en-us/library/hh849932

» Refer to MSDN Export-Clixml, available at:
http://msdn.microsoft.com/en-us/library/hh849916

Using Invoke-Expression

In this recipe, we will use the Invoke-Expression cmdlet.

Getting ready

For this recipe, we will use the 7-zip application to compress some files. Download 7-zip from
http://www.7-zip.org/.

468

http://msdn.microsoft.com/en-us/library/hh849932

http://msdn.microsoft.com/en-us/library/hh849932

http://msdn.microsoft.com/en-us/library/hh849916
http://msdn.microsoft.com/en-us/library/hh849916
http://www.7-zip.org/

Chapter 9

How to do it...

Let's check out the Invoke-Expression cmdlet.

1. Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

2. Add the following script and run it:

SVerbosePreference = "Continue"

$Sprogram = "~ "C:\Program Files\7-Zip\7z.exe™""
$7zargs = " a -tzip "

$zipFile = " “"C:\Temp\new archive.zip™" "
$directoryToZip = " ~"C:\Temp\old™" "

Scmd = "& Sprogram S$7zargs S$zipFile $directoryToZip "

#display final command
Write-Verbose $cmd

Invoke-Expression $cmd

SVerbosePreference = "SilentlyContinue"

The Invoke-Expression cmdlet allows PowerShell expressions to be run from PowerShell.
These expressions can consist of other PowerShell statements and functions, or they can
contain executables and arguments.

In this recipe, we are composing the command to run 7z . exe and pass it the name of a folder,
which needs to be compressed into a ZIP file.

The challenge faced most often with using Invoke-Expression is making sure that the
full path of the program, or the full arguments, are all properly escaped. In our recipe, we

individually compose the strings for the executable and the arguments. All the strings are

escaped with a backtick.

$program = "~ "C:\Program Files\7-Zip\7z.exe™""
$7zargs = " a -tzip "

$zipFile = " “"C:\Temp\new archive.zip™" "
$directoryToZip = " ~"C:\Temp\old™" "

Helpful PowerShell Snippets

Scmd = "& Sprogram S$7zargs S$SzipFile $directoryToZip "
#display final command
Write-Verbose $cmd

When we display the command, we will see that the double quotes are preserved:

VERBOSE: & "C:“Program Files‘7-Zip\7z.exe" a -tzip "C:\Temp'new archive.zip" "C:\Temp'old"

The preceding ampersand is considered as a call operator, and this whole expression is
meant to run the 7z . exe application and compress the C: \Temp\o1ld folder into a file
called new archive.zip.

Finally, running the expression requires using the Invoke-Expression cmdlet, and passing
the string command argument:

Invoke-Expression $cmd

There's more...

» Refer to MSDN Invoke-Expression, available at:
http://msdn.microsoft.com/en-us/library/hh849893

Testing regular expressions

In this recipe we are going to explore some ways to use and test regular expressions.

How to do it...

Let's check out regular expressions in PowerShell.

1. Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

2. Add the following script and run it:

SVerbosePreference = "Continue"

#icheck if valid email address

$Sstr = "belle@sglmusings.com"

$pattern = "“[A-Z0-9. %+-]1+@[A-Z0-9.-1+\.(?:[A-Z]{2}|com|org|net|g
ov|ca|mil|biz|info|mobi|name|aero|jobs|museum)$"

if ($str -match $pattern)

{

470

http://msdn.microsoft.com/en-us/library/hh849893
http://msdn.microsoft.com/en-us/library/hh849893

Chapter 9

Write-Verbose "Valid Email Address"

}

else

{

Write-Verbose "Invalid Email Address"

#another way to test
[Regex] : :Match (str, SSpattern)

#can also use regex in switch
Sstr "V1A 2V1"

Sstr "90250"

switch -regex ($str)

{

m(\A{5}$) | (*\a{s}-\d{a}s)"
{
Write-Verbose "Valid US Postal Code"
1
"[A-Za-z] \d[A-Za-z]\s*\d[A-Za-z]\d"
{

Write-Verbose "Valid Canadian Postal Code"

}

default

{

Write-Verbose "Don't Know"

#use regex and extract matches

#to create named groups - use format ?<groupname>

S$str = "Her number is (604)100-1004. Sometimes she can be reached
at (604)100-1005."

Spattern = @"

(?<phone>\ (\d{3}\)\d{3}-\d{4})

"@

Sm = [regex]::Matches($Sstr, $pattern)
#list individual phones

$m | Foreach ({
Write-Verbose "$($_.Groups["phone"] .Value)"

$VerbosePreference = "SilentlyContinue"

Helpful PowerShell Snippets

We have looked at a few ways to use and test regular expressions in this recipe.

A regular expression is a string pattern—for example, a pattern for a valid ZIP code,
or an e-mail address, that can be used to compare strings.

Here are some of the common patterns:

Pattern Description

\ Escape character

* Beginning of line

$ End of line

* Matches zero or many times

? Matches zero or one time

+ Matches one or more times

. Matches a single character except newline
patternl|pattern2 Matches either of the patterns
pattern{m} Matches a pattern exactly m times
pattern{m,n} Matches minimum m to a maximum n times
pattern{m, } Matches minimum m times

[abcd] Matches any character in a set

[a-d] Matches any character in a range
["abed] Matches characters NOT in a set

\n Newline

\r Carriage return

\b Word boundary

\B Non-word boundary

\d Digits: 0-9

\D Non-digijt

\w Word character; equivalent to [A-Za-z0-9_]
\W Non-word character

\s Space character

\S Non whitespace character

PowerShell has the -match and -replace operators that allow strings to be matched or
replaced against a pattern. PowerShell also supports the static methods of the Regex class,
such as [regex] : :Match, and [regex] : :Matches.

472

Chapter 9

In the first example, we will check for a valid e-mail address and we will use the
-match operator.

#check if valid e-mail address

$str = "belle@sglmusings.com"

$pattern = ""[A-Z0-9. %+-]1+@[A-Z0-9.-]1+\.(?:[A-Z]{2}|com|org|net|gov]|c
a|mil|biz|info|mobi|name|aero|jobs |museum)$"

if ($str -match $pattern)

{

Write-Verbose "Valid Email Address"

}

else

{

Write-Verbose "Invalid Email Address"

}

Regular expressions can also be used in a switch statement. In our example, we were
checking if our string is either a valid US or Canadian postal code:

#can also use regex in switch

Sstr = "V1A 2vV1";
switch -regex ($str)
{

"(P\d{5}$) | ("\d{s5}-\d{4}$)"
{

Write-Verbose "Valid US Postal Code"
1
"[A-Za-z]\d[A-Za-z]\s*\d[A-Za-z]\d"
{

Write-Verbose "Valid Canadian Postal Code"

}

default

{

Write-Verbose "Don't Know"

}

If there is a possibility of multiple matches, we can use the [regex] : :Matches operator,
and pipe the result to a Foreach cmdlet to display the group matches.

#use regex and extract matches
#to create named groups - use format ?<groupnames

Sstr = "Her number is (604)100-1004. Sometimes she can be reached at
(604)100-1005."

Spattern = @"
(?<phone>\ (\d{3}\)\d{3}-\d{4})

Helpful PowerShell Snippets

"@

Sm

= [regex] ::Matches ($Sstr, $pattern)

#list individual phones

$m | Foreach ({

}

Write-Verbose "$($_.Groups["phone"] .Value)"

The pattern we are using is a named group, specified by the (?<phone>) label. Anything that
is matched by the pattern in the parenthesis can later be referred to by the label phone.

There's more...

>

For more information on regex methods, visit:

http://msdn.microsoft.com/en-us/library/axa83z9t

Refer to Regular Expression Language - Quick Reference, available at:

http://msdn.microsoft.com/en-us/library/az24scfc.aspx

Refer to the PowerShell Admin Regex article, available at:

http://www.powershelladmin.com/wiki/Powershell regular
expressions

Managing folders

In this recipe, we will explore different cmdlets that support folder management.

How to do it...

Let's take a look at different cmdlets that can be used for folders.

1.

474

Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

Add the following script and run it:

#list folders ordered by name descending
S$Spath = "C:\Temp"

#get directories only
Get-Childitem sSpath | Where PSIsContainer

#icreate folder

http://msdn.microsoft.com/en-us/library/axa83z9t
http://msdn.microsoft.com/en-us/library/axa83z9t
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://www.powershelladmin.com/wiki/Powershell_regular_expressions
http://www.powershelladmin.com/wiki/Powershell_regular_expressions
http://www.powershelladmin.com/wiki/Powershell_regular_expressions

Chapter 9

$newFolder = "C:\Temp\NewFolder"
New-Item -Path $newFolder -ItemType Directory -Force

#icheck if folder exists
Test-Path $newFolder

#copy folder
SanotherFolder = "C:\Temp\NewFolder2"
Copy-Item $newFolder S$SanotherFolder -Force

#move folder
Move-Item S$SanotherFolder S$newFolder

#delete folder
Remove-Item $SnewFolder -Force -Recurse

Here are some cmdlets that support folder manipulation:

Cmdlet Description

Get-ChildItem Lists all directories in a path

#get directories only
Get-Childitem S$path | Where PSIsContainer

Test-Path Checks if a folder exists
Test-Path S$newFolder
New-Item Creates a new folder

PS> NewItem -Path $newFolder -ItemType
Directory -Force

Copy-Item Copies a folder

Copy-Item $newFolder SanotherFolder -Force
Move-Item Moves a folder to a different location

Move-Item S$anotherFolder S$newFolder

Remove-Item Deletes a folder and all its contents

Remove-Item $newFolder -Force -Recurse

Helpful PowerShell Snippets

There's more...

Refer to the following links provided to gain a better understanding on folder management
using cmdlets:

>

Files and Folders, Part | (TechNet, by the Microsoft Scripting Guys):
http://technet.microsoft.com/en-us/library/eel76983

Files and Folders, Part Il (TechNet, by the Microsoft Scripting Guys):
http://technet.microsoft.com/en-us/library/eel76985

Files and Folders, Part Ill (TechNet, by the Microsoft Scripting Guys):
http://technet.microsoft.com/en-us/library/eel76988

See also

>

The Manipulating files recipe

Manipulating files

In this recipe, we will look at different cmdlets that help to manipulate files.

How to do it...

Let's explore different ways to manage files.

1.

2.

476

Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

Add the following script and run it:

#icreate file

Stimestamp = Get-Date -format "yyyy-MMM-dd-hhmmtt"
$Spath = "C:\Temp\"

$filename = "Stimestamp.txt"

$fullpath = Join-Path $path $filename

New-Item -Path $path -Name $filename -ItemType "File"

#icheck if file exists
Test-Path $fullpath

#copy file
$Spath = "C:\Temp\"

http://technet.microsoft.com/en-us/library/ee176983
http://technet.microsoft.com/en-us/library/ee176983
http://technet.microsoft.com/en-us/library/ee176985
http://technet.microsoft.com/en-us/library/ee176985
http://technet.microsoft.com/en-us/library/ee176988
http://technet.microsoft.com/en-us/library/ee176988

Chapter 9

$newfilename = Stimestamp + " 2.txt"
S$fullpath2 = Join-Path S$path $newfilename

Copy-Item $fullpath $fullpath2

#move file
$newfolder = "C:\Data"
Move-Item $fullpath2 $newfolder

#append to file
Add-Content $fullpath "Additional Item"
notepad $fullpath

#merge file contents

$newcontent = Get-Content "C:\Temp\processes.txt"
Add-Content $fullpath $newcontent

notepad $fullpath

#delete file
Remove-Item $fullpath

Here are some of the cmdlets that support file manipulation:

Cmdlet Description
Test-Path Checks if a file exists

Test-Path $fullpath
Join-Path Combines a path and a child path

Join-Path S$path $filename
New-Item Creates a new file

New-Item -Path Spath -Name $filename
-ItemType "File"

Get-Content Retrieves the content of a file

Get-Content "C:\Temp\processes.txt"
Add-Content Appends content to a file

Add-Content $fullpath S$newcontent
Copy-Item Copies a file

Copy-Item $fullpath $fullpath2

Helpful PowerShell Snippets

Cmdlet Description

Move-Item Moves a file to a different location
Move-Item $fullpath2 $newfolder
Remove-Item Deletes a file

Remove-Item $fullpath

Refer to the following for more information on file manipulation:

» Files and Folders, Part | (Technet, by the Microsoft Scripting Guys):
http://technet.microsoft.com/en-us/library/eel76983

» Files and Folders, Part Il (Technet, by the Microsoft Scripting Guys):
http://technet.microsoft.com/en-us/library/eel76985

» Files and Folders, Part lll (Technet, by the Microsoft Scripting Guys):
http://technet.microsoft.com/en-us/library/eel76988

» Managing folders

Searching for files

In this recipe, we will search for files based on filenames, attributes, and content.

How to do it...

Let's explore different ways to use Get -ChildItem to search for files.
1. Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.
2. Add the following script and run it:
#isearch for file with specific extension

$path = "C:\Temp"
Get-ChildItem -Path $path -Include *.sqgl -Recurse

#isearch for file based on date creation
#use LastWriteTime for date modification

478

http://technet.microsoft.com/en-us/library/ee176983
http://technet.microsoft.com/en-us/library/ee176983
http://technet.microsoft.com/en-us/library/ee176985
http://technet.microsoft.com/en-us/library/ee176985
http://technet.microsoft.com/en-us/library/ee176988
http://technet.microsoft.com/en-us/library/ee176988

Chapter 9

[datetime] SstartDate = "2012-05-01"
[datetime] SendDate = "2012-05-20"

#note date is at 12 midnight

#sample date Sunday, May 20, 2012 12:00:00 AM

#PowerShell V3 Where-Object syntax
Get-ChildItem -Path $path -Recurse |
Where CreationTime -ge $startDate |
Where CreationTime -le S$endDate |
Sort -Property LastWriteTime

#list files greater than 10MB

#PowerShell V3 syntax

Get-ChildItem $path -Recurse |

Where Length -ge 10Mb |

Select Name,

@{Name="MB" ;Expression={"{0:N2}" -f ($_ .Length/1MB)}} |
Sort -Property Length -Descending |

Format-Table -AutoSize

#isearch for content of file

#search TXT, CSV and SQL files that contain

#the word "QueryWorks"

Spattern = "QueryWorks"

Get-ChildItem -Path $path -Include *.txt, *.csv, *.sgl -Recurse
Select-String -Pattern S$pattern

The Get -ChildItem cmdlet displays contents of a given path:
Get-ChildItem

You can also use the aliases gci, 1s, or dir instead of Get -ChildItem when typing
this command.

We can pipe the results of Get-ChildItemto a Where cmdlet to filter the results.
For example, if we wanted to look for only . sql files, we would use:

#search for file with specific extension
$path = "C:\Temp"
Get-ChildItem -Path $path -Include *.sgl -Recurse

Helpful PowerShell Snippets

To get files created within a date range, we pipe the results, and in the Where-Object
cmdlet, we filter based on the CreationTime property. Note that dates are automatically
assigned a timestamp of midnight, and the following example actually gets all files created
between May 1 and May 19:

#search for file based on creation date

#use LastWriteTime for modification date
[datetime] $startDate = "2012-05-01"
[datetime] $endDate = "2012-05-20"

#note date is at 12 midnight

#sample date Sunday, May 20, 2012 12:00:00 AM

#PowerShell V3

Get-ChildItem -Path $path -Recurse |
Where CreationTime -ge $startDate |
Where CreationTime -le S$SendDate |
Sort -Property LastWriteTime

To retrieve the same files in PowerShell V2, we can use the Where-0Object syntax:

#PowerShell V2

Get-ChildItem -Path $path -Recurse |

Where {$.CreationTime -ge $startDate -and $.CreationTime -le
$endDate} |

Sort -Property LastWriteTime

To filter files based on file size, we can filter the files using the Length property. Note that
PowerShell supports the constants KB (kilobyte), MB (megabyte), GB (gigabyte), TB (terabyte),
and PB (petabyte):

#list files greater than 10MB

#PowerShell V3 syntax

Get-ChildItem $path -Recurse |

Where Length -ge 10Mb |

Select Name,

@{Name="MB" ;Expression={"{0:N2}" -f ($.Length/1MB) }}
Sort -Property Length -Descending |

Format-Table -AutoSize

The last example showcases the use of the -Include switch with the Get-ChildItem
cmdlet, which allows the cmdlet to selectively include only specific files based on the pattern
that was passed. This example also highlights how we can search not only flenames and
paths, but the actual contents of the file using the Select-String cmdlet. The Select-
String cmdlet can only search for text files, however; it cannot search other proprietary
formats such as .doc, .docx, and .pdf.

480

Chapter 9

#isearch for content of file

#search TXT, CSV and SQL files that contain

#the word "QueryWorks"

Spattern = "QueryWorks"

Get-ChildItem -Path $path -Include *.txt, *.csv, *.sql -Recurse
Select-String -Pattern $pattern

There's more...

» Refer to MSDN Get-Childitem, available at:

» http://msdn.microsoft.com/en-us/library/hh849800

» Refer to MSDN Select-String, available at:
http://msdn.microsoft.com/en-us/library/hh849903

See also

» Getting aliases

Reading an event log

In this recipe, we will read the event log.

How to do it...

Let's see how we can read the Windows event log from PowerShell.

1. Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

2. Add the following script and run it:

Get-EventLog -LogName Application -Newest 20 -EntryType Error

Reading the event log is straightforward in PowerShell. We can do this using the Get -
EventLog cmdlet. This cmdlet accepts a few switches, which includes LogName and
EntryType.

Get-EventLog -LogName Application -Newest 20 -EntryType Error

http://msdn.microsoft.com/en-us/library/hh849800

http://msdn.microsoft.com/en-us/library/hh849800

http://msdn.microsoft.com/en-us/library/hh849903
http://msdn.microsoft.com/en-us/library/hh849903

Helpful PowerShell Snippets
Some of the possible L.ogName values are as follows:

» Application

» HardwareEvents

» Internet Explorer
» Security

» System

» Windows PowerShell
You can alternatively pass it the name of a custom log available in your system.
The EntryType switch can be of the following types:

» Error

» FailureAudit
» Information
» SuccessAudit

» Warning

In our recipe, we also use the -Newest switch, to filter only for the newest 20 error events.

There's more...

Refer to MSDN Get-EventLog, available at:

http://msdn.microsoft.com/en-us/library/hh849834

Sending e-mail

In this recipe, we send an e-mail with an attachment.

Getting ready

Before proceeding, identify the following in your environment:

» SMTP server

» Recipient's e-mail address
» Sender's e-mail address

» Attachment

482

http://msdn.microsoft.com/en-us/library/hh849834
http://msdn.microsoft.com/en-us/library/hh849834

Chapter 9

How to do it...

The following are the steps to send an e-mail:

1.

Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

Add the following script and run it:

$file = "C:\Temp\processes.csv"
Stimestamp = Get-Date -format "yyyy-MMM-dd-hhmmtt"

#inote we are using backticks to put each parameter
#in its own line to make code more readable
Send-MailMessage

-SmtpServer "queryworks.local"

-To "administrator@queryworks.local"

-From "powershelle@egaia.local" ~

-Subject "Process Email - $file - S$timestamp"

-Body "Your requested file is attached."
-Attachments s$file

One way to send an e-mail using PowerShell is by using the Send-MailMessage cmdlet.
Some of the switches it accepts are as follows:

>

>

-SmtpServer
-To

-Cc

-Bcc
-Credential
-From
-Subject
-Body
-Attachments
-UseSsl

Helpful PowerShell Snippets

There's more...

Refer to MSDN Send-MailMessage, available at:

http://msdn.microsoft.com/en-us/library/hh849925.aspx

Embedding C# code

In this recipe, we will embed and execute C# code in our PowerShell script.

How to do it...

Let's explore how to embed C# code in PowerShell.

1. Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

2. Add the following script and run it:

#define code
#note this can also come from a file

Scode = @"
using System;
public class HelloWorld

{

public static string SayHello(string name)

{
}

public string GetLuckyNumber (string name)

{

return (String.Format ("Hello there {0}", name));

Random random = new Random() ;

int randomNumber = random.Next (0, 100) ;

string message = String.Format ("{0}, your lucky" +
" number for today is {1}",
name, randomNumber) ;

return message;

}

"@

#add this code to current session
Add-Type -TypeDefinition $code

http://msdn.microsoft.com/en-us/library/hh849925.aspx
http://msdn.microsoft.com/en-us/library/hh849925.aspx

Chapter 9

#call static method
[HelloWorld] : : SayHello("belle")

#icreate instance
$instance = New-Object HelloWorld

#call instance method
$instance.GetLuckyNumber ("belle")

We can use C# code from within PowerShell. This will require constructing a class in a here-
string and adding that class as a type to the session using the Add-Type cmdlet. The Add-
Type cmdlet allows the construction of the class in the session, or to all sessions if created
within the PowerShell profile.

In the recipe, we use a very simple class defined in a here-string:

Scode = @"
using System;
public class HelloWorld

{

public static string SayHello(string name)

{

return (String.Format ("Hello there {0}", name));

}

public string GetLuckyNumber (string name)

{

Random random = new Random() ;

int randomNumber = random.Next (0, 100) ;

string message = String.Format ("{0}, your lucky" +
" number for today is {1}",
name, randomNumber) ;

return message;

}

"@

This code does not have to be built and hardcoded within the script. It can be read from
another file using the Get -Content cmdlet and stored into the $Scode variable.

To put this class in effect in the current session, we use the Add-Type cmdlet:

#add this code to current session

Add-Type -TypeDefinition $code

Helpful PowerShell Snippets

Note that this class has both a static and non-static method. To call the static method,
we must use the class name:

#call static method

[HelloWorld] : : SayHello ("belle")

To call the non-static method, we must instantiate an object first, and then call the method
using the object:

#call instance method

$instance.GetLuckyNumber ("belle")

There's more...

Refer to MSDN Add-Type, available at:

http://msdn.microsoft.com/en-us/library/hh849914

Creating an HTML report

In this recipe, we will create an HTML report based on the system's services.

How to do it...

This is a sample of how we can create an HTML report using PowerShell.

1. Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

2. Add the following script and run it:

#simple CSS Style
Sstyle = @"
<style type='text/css'>
td {border:1lpx solid gray;}
.stopped{background-color: #E01B1B;}
</style>
"@

#let's get content from Get-Service
#and output this to styled HTML
Get-Service |
ConvertTo-Html -Property Name, Status -Head $style |
Foreach ({
#if service is running, use green background

486

http://msdn.microsoft.com/en-us/library/hh849914
http://msdn.microsoft.com/en-us/library/hh849914

Chapter 9

if ($_ -like "*<td>Stopped</tds>*")
{

$_ -replace "<tr>", "<tr class='stopped's>"

}

else
{
#display normally
$_
}
b

Out-File "C:\Temp\sample.html" -force

Set-Alias ie "Senv:programfiles\Internet Explorer\iexplore.exe"
ie "C:\Temp\sample.html"

The following screenshot shows a sample result:

@ C:\Temp\sample. hitml | |

Name Status
|AdobeARMservice |Running |

|AppH{:-5t Sve

”Rmmﬁ@|

BITS |[Running |

In this recipe, we piped the result of the Get -Service cmdlet, which returns all services,
into the ConvertTo-HTML cmdlet. The ConvertTo-HTML cmdlet formats the results as
HTML. This cmdlet also allows you to configure what goes into an HTML <head> tag. This
is where you typically add your CSS styles and JavaScript.

Once the file has been created, we set an alias to Internet Explorer and just display the
resulting HTML file in the browser.

Helpful PowerShell Snippets

There's more...

Refer to MSDN ConvertTo-HTML, available at:

http://msdn.microsoft.com/en-us/library/hh849944

In this recipe, we will parse a sample XML document using PowerShell.

Getting ready

In this recipe, we will use Vancouver's 2012 daily weather data, which can be downloaded
from the following URL:

http://www.climate.weatheroffice.gc.ca/climateData/dailydata e.html?
Prov=BC&StationID=889&Year=2012&Month=4&Day=30&timeframe=2

How to do it...

Let's look at how we can parse XML files.

1. Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

2. Add the following script and run it:

$vancouverXML = "C:\XML Files\eng-daily-01012012-12312012.xml"
[xml] $xml = Get-Content S$vancouverXML

#get number of entries
$xml.climatedata.stationdata.Count

#store max temps in array
$maxtemp = $xml.climatedata.stationdata |
Foreach { [int]$.maxtemp."#text" }

#list all daily max temperatures
$maxtemp | Sort -Descending

#get max temperature recorded in 2012
$maxtemp | Sort -Descending | Select -First 1

488

http://msdn.microsoft.com/en-us/library/hh849944
http://msdn.microsoft.com/en-us/library/hh849944

Chapter 9

One of the key things to do, when working with XML data, is to make sure the data is stored as
an XML object. In our recipe, we get the contents of the file using Get - Content, and store it
in the strongly typed variable, sxml. We know it is strongly typed because we have placed the
[xml] data type right at the variable declaration:

$vancouverXML = "C:\XML Files\eng-daily-01012012-12312012.xml"
[xml] $xml = Get-Content S$SvancouverXML

The following screenshot is an example of how the file is formatted:

@C:\XML Files\eng-daily-01012012-12312012, xml | | & T E hEI

<?xml version="1.0" encoding="UTF-8" 7=
- «climatedata xmins:xsd="http://www.w3.0rg/2001/XMLSchema-instance"
xsd:schemalLocation="http:/ /www.climate.weatheroffice.gc.ca/climateData/bullkx
<lang=ENG</lang>
+ <legend:=
- <stationinformation>
name>VANCOUVER INT'L A</name=
<province>=BRITISH COLUMBIA </province>
zlatitude =49.20</latitude =
<longitude >-123.18 </longitude >
<elevation>4.30</elevation=>
zclimate_identifier>=1108447 </climate_identifiers>
=wmo_identifier=71892 </wmo_identifier:
<tc_identifier=¥VR</tc_identifier=
</stationinformation=
- «<stationdata day="1" month="1" year="2012" quality="#%">
<maxtemp description="Maximum Temperature" units="°C"=6.40</maxtemp =
<mintemp description="Minimum Temperature" units="°C">1.30</mintemp>
<meantemp description="Mean Temperature" units="°C">3.90</meantemp>
<totalrain description="Total Rain" units="mm"=0.20</totalrain>
<totalsnow description="Total Snow" units="cm">0.00</totalsnow =
<totalprecipitation description="Total Precipitation" units="mm":=0.20</totalprecipitati
<snowonground description="Snow on Ground" units="cm" />
<dirofmaxgust description="Direction of Maximum Gust" units="10s Deg">0.00</dirof

caadnfros de an="Speed gf b) st e dopa /b 00 - oo sl

To know how many records are in the file, we can traverse the stationdata nodes and
count the records:

#get number of entries
$xml.climatedata.stationdata.Count

To manipulate the maxtemp data, we can loop through all the nodes and extract the values
into an array:

#store max temps in array
$maxtemp = $xml.climatedata.stationdata |
Foreach { [int]$.maxtemp."#text" }

Helpful PowerShell Snippets

When the data is in the array, we can further manipulate it. For example, we can now more
easily sort as needed, or get the overall maximum value if required:

#list all daily max temperatures
$maxtemp | Sort -Descending

#get max temperature recorded in 2012
$maxtemp | Sort -Descending | Select -First 1

Extracting data from a web service

In this recipe, we will extract data from a free, public web service.

How to do it...

Let's explore how to access and retrieve data from a web service.

1. Open PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.

2. Add the following script and run it:

#delayed stock quote URI

$stockUri = "http://ws.cdyne.com/delayedstockquote/
delayedstockquote.asmx"

$Sstockproxy = New-WebServiceProxy -Uri $stockUri
-UseDefaultCredential

#get quote
$stockresult = $stockProxy.GetQuote ("MSFT","")

#display results
$stockresult.StockSymbol
$stockresult.DayHigh
$stockresult.DayLow
$stockresult.LastTradeDateTime

To work with a web service, we first need to create a proxy object that will allow us to access
the methods available from a web service. We can achieve this by using the New-WebProxy
cmdlet, which accepts the web service URL.

490

Chapter 9

$stockUri = "http://ws.cdyne.com/delayedstockquote/delayedstockquote.
asmx"

This URI points to a free web service that provides delayed stock quote values. If we go to this
URI from the browser, the following screenshot is what we are going to see:

C | © ws.cdyne.com/delayedstockquote/delayedstockquote.asmx

DelayedStockQuote

[The following operations are supported. For a formal definition, please review the Service Description.

+ GetQuickQuote
This method retrieves just a stock price. Use a license key of 0 for testing.

+ GetQuote
This method retrieves a current stock quote. Use a license key of 0 for testing.

+ GetQuoteDataSet
Thizs method retrieves the stock information and returns it in a dataset. Use a , to diplay multig

We can see that this web service has a method called GetQuote, which retrieves the current
stock quote. This accepts a stock symbol and a license key. In our script, we call this method
through our proxy object:

#get quote
$stockresult = S$stockProxy.GetQuote ("MSFT","")

If we were to plug these values into the browser, the following screenshot is a sample result
that we might get:

w<QuoteData xmlns:xsd="http://www.w3.org/ 2001,/ ¥ML5chema™ =xmlins
<5tockS5ymbol *M5FT</ StockSymbol -
<LastTradelmount>29.06</LastTradeimount >
<LastTradeDateTime>2012-05-25T16:00:00</LastTradeDateTime>
<StockChange>-0.01</5tockChange>
<OpenAmount>29. 16« /0penimount>
<DavHigh>29,36</DavHigh>
<DayvLow>29.01</DavLow>
<StockVolume>29508244</5tockVolume:>
<FrevCls>29.07</FrevCls>
<ChangePercent»-0.03%</ChangePercent>
<FiftyTwoWeekRange»23.65 - 32.95</FiftyTwoWeekRange>
<EarnPerS5hare>2.73</EarnPerSharex>
<PE>10.65</PE>
<CompanyName>Microsoft Corpora</CompanyName:>
<fuoteError>false</{uoteError>
</QuoteData>

Helpful PowerShell Snippets

To display these in our script, we simply need to know how to traverse the nodes from the root
to the values we want to display. In our case, we wanted to display StockSymbol, DayHigh,
DayLow, and LastTradeDateTime

#display results
$stockresult.StockSymbol
$stockresult.DayHigh
$stockresult.DayLow
$stockresult.LastTradeDateTime

There's more...

Refer to MSDN New-WebServiceProxy, available at:

http://msdn.microsoft.com/en-us/library/hh849841

Using PowerShell Remoting

In this recipe, we will use PowerShell Remoting to execute commands on a remote machine.

Getting ready

We first need to identify which remote machine we want to use. In our recipe, we will connect
to a remote machine called ZERATULDC from our client machine KERRIGAN. These two
machines are in the same domain.

Log in to ZERATULDC, or to a machine you want to use for remoting. We need to enable
PowerShell Remoting. Check out the system and permission requirements for running
PowerShell Remoting from MSDN about_Remote_Requirements, available at
http://msdn.microsoft.com/en-us/library/hh847859.aspx.

To turn on remoting, open up the PowerShell console using elevated privileges. Right-click on
the PowerShell console and go to Run as Administrator. Execute the following command:

PS> Enable-PSRemoting

You will be prompted to confirm a couple of times. Answer A (or Yes to All) to these questions.
Your screen should look similar to the following screenshot:

492

http://msdn.microsoft.com/en-us/library/hh849841
http://msdn.microsoft.com/en-us/library/hh847859.aspx
http://msdn.microsoft.com/en-us/library/hh847859.aspx

Chapter 9

;{—h;mmzmmnc EMENMEEE]
Administrator: Windows PowerShell

Enable-PSRemoting

y» enable this machine for remote management through WinRM service.

tarted) the WinRM s

r
n any IP addre:
ement traffic http only).

[?] Help (default is "¥"
nRM :
WinRM already

o remotely run Windows

We also need to add our remote computer ZERATULDC as a trusted host. Open a PowerShell
console as administrator from KERRIGAN and run the following:

Set-Item wsman:localhost\client\trustedhosts -value ZERATULDC

How to do it...

Let's explore how to use PowerShell Remoting to execute commands on a remote machine.

1. Open a PowerShell console as administrator from KERRIGAN. Right-click on the
PowerShell console icon, and select Run as administrator.

2. Let's execute a remote command first.

Invoke-Command -ComputerName ZERATULDC -Credential "QUERYWORKS\
Administrator" -ScriptBlock {

Get-Wmiobject win32 computersystem

}

3. Next, let's start an interactive remoting session to ZERATULDC. We will provide our
credentials to the machine by specifying the -Credential parameter.
Enter-PSSession -ComputerName ZERATULDC -Credential "QUERYWORKS\
Administrator"

Note that as soon as we are authenticated, the prompt changes to indicate we are
now in ZERATULDC. This is shown in the following screenshot:

[ZERATULDC] : PS C:\Users\Administrator\Documents:>

N
©
(2]

Helpful PowerShell Snippets

4. Let's execute a simple command in our remoting session. Execute the following:

Get-Wmiobject win32 computersystem

You should see a result similar to the following screenshot. Note the prompt still
displays ZERATULDC.

strator: Windows PowerShell

PS C:\Users\Administrator> Enter-PSSession -ComputerName ZERATULDC -Credential "QUERY.
[ZERATULDC]: PS C:\Users\Administrator\Documents> Get-Wmiobject win32_computersystem

Domain : queryworks.local
Manufacturer : VMware, I

Mode1 : VMware Vi al Platform
Name : ZERATULDC
PrimaryOwnerName : Windows User
TotalPhysicalMemory : 1073209344

5. Exit out of the session by typing exit.

PowerShell Remoting allows you to connect and execute PowerShell commands on

remote machines. PowerShell Remoting uses Web Services for Management (WSMan) to
communicate to a remote machine, and Windows Remote Management (WinRM) service
on the remote machine to listen for incoming WSMan requests.

There are different ways to execute remote commands. We can use the Invoke-Command
cmdlet to establish a remote connection, execute our command(s) and get our results, and
disconnect. The command(s) we want to execute can either be placed in the -ScriptBlock
parameter, or in a file specified with the -FilePath parameter. In our recipe we used
-ScriptBlock.

Invoke-Command -ComputerName ZERATULDC -Credential "QUERYWORKS\
Administrator" -Authentication Negotiate -ScriptBlock {

Get-Wmiobject win32 computersystem

}

We have also chosen to provide our credentials to ZERATULDC by specifying the -Credential
parameter. You can choose to prompt for both username and password by using the
Get-Credential cmdlet, and passing this to the Invoke-Command cmdlet.

$cred = Get-Credential

Another way to execute a remote command is by establishing an interactive session to a
remote machine. We do this by using the Enter-PSSession cmdlet:

494

Chapter 9

Enter-PSSession -ComputerName ZERATULDC -Credential "QUERYWORKS\
Administrator" -Authentication Negotiate

Once the remoting interactive session is started, you will notice that the PowerShell prompt
changes to show the remote computer's name. We can then start executing commands in
this session.

What we have shown in this recipe is just a very brief example of how you can use
PowerShell Remoting. To learn more about PowerShell Remoting, including system
and permission requirements, how to set up HTTPS, and so on, be sure to check the
recommended additional resources in the There's more... section.

There's more...

Check the following resources for additional information on remoting:

» MSDN Remoting Requirements:
http://msdn.microsoft.com/en-us/library/hh847859.aspx

» Layman's Guide to PowerShell 2.0 Remoting by Ravikanth Chaganti:
http://www.ravichaganti.com/blog/?p=1305

» An Introduction to PowerShell Remoting (5-part series):

http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/23/
an-introduction-to-powershell-remoting-part-one.aspx

http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/24/
an-introduction-to-powershell-remoting-part-two-configuring-
powershell-remoting.aspx

http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/25/
an-introduction-to-powershell -remoting-part-three-interactive-
and-fan-out-remoting.aspx

http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/26/
an-introduction-to-powershell -remoting-part-four-sessions-and-
implicit-remoting.aspx

http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/27/
an-introduction-to-powershell -remoting-part-five-constrained-
powershell-endpoints.aspx

» Secrets of PowerShell Remoting;:

http://powershellbooks.com/SecretsofPowerShellRemoting.pdf

N
©
(3]

http://msdn.microsoft.com/en-us/library/hh847859.aspx
http://msdn.microsoft.com/en-us/library/hh847859.aspx
http://www.ravichaganti.com/blog/?p=1305
http://www.ravichaganti.com/blog/?p=1305
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/23/an-introduction-to-powershell-remoting-part-one.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/23/an-introduction-to-powershell-remoting-part-one.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/23/an-introduction-to-powershell-remoting-part-one.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/24/an-introduction-to-powershell-remoting-part-two-configuring-powershell-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/24/an-introduction-to-powershell-remoting-part-two-configuring-powershell-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/24/an-introduction-to-powershell-remoting-part-two-configuring-powershell-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/24/an-introduction-to-powershell-remoting-part-two-configuring-powershell-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/25/an-introduction-to-powershell-remoting-part-three-interactive-and-fan-out-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/25/an-introduction-to-powershell-remoting-part-three-interactive-and-fan-out-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/25/an-introduction-to-powershell-remoting-part-three-interactive-and-fan-out-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/25/an-introduction-to-powershell-remoting-part-three-interactive-and-fan-out-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/26/an-introduction-to-powershell-remoting-part-four-sessions-and-implicit-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/26/an-introduction-to-powershell-remoting-part-four-sessions-and-implicit-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/26/an-introduction-to-powershell-remoting-part-four-sessions-and-implicit-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/26/an-introduction-to-powershell-remoting-part-four-sessions-and-implicit-remoting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/27/an-introduction-to-powershell-remoting-part-five-constrained-powershell-endpoints.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/27/an-introduction-to-powershell-remoting-part-five-constrained-powershell-endpoints.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/27/an-introduction-to-powershell-remoting-part-five-constrained-powershell-endpoints.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/27/an-introduction-to-powershell-remoting-part-five-constrained-powershell-endpoints.aspx
http://powershellbooks.com/SecretsofPowerShellRemoting.pdf
http://powershellbooks.com/SecretsofPowerShellRemoting.pdf

SQL Server and
PowerShell CheatSheet

Learning PowerShell

» Get-Help lists syntax, usage, examples:
Get-Help Restore-SglDatabase
Get-Help Backup-SglDatabase -Examples
Get-Help Invoke-Sglcmd -Full
Get-Help Get-Process -Online

» Get-Command lists cmdlets and functions:
Get-Command -Module SQLPS
Get-Command -Module SQLASCMDLETS

Get-Command -Name "*Event*"

» Get-Member lists properties and methods:
$server | Get-Member -Name "*Version*"

Select Name, MemberType

SQL Server and PowerShell CheatSheet

PowerShell V2 versus V3 Where-Object

syntax

PowerShell V2 uses {} and $_:

$server | Get-Member |

Where-Object {$_.MemberType -eq "Property"}
PowerShell V3 is simplified:

$server | Get-Member |

Where-Object MemberType -eq "Property"

Changing execution policy

The execution policy determines which PowerShell scripts are allowed to run:

» To get:

Get-ExecutionPolicy

» Toset:

Set-ExecutionPolicy RemoteSigned

Execution policies

Execution Policy Description

Restricted Default execution policy

PowerShell will not run any scripts

AllSigned PowerShell will run only signed scripts

RemoteSigned PowerShell will run signed scripts, or locally
created scripts

Unrestricted PowerShell will run any scripts, signed or not

Bypass PowerShell will not block any scripts, and will

prevent any prompts or warnings

Undefined PowerShell will remove the set execution policy
in the current user scope

Appendix A

Running a script

Save your PowerShell code in a file with a .ps1 extension.

>

From the PowerShell console, if the script is in the current directory and the filename
does not have any spaces:

PS C:\> .\MyScript.psl

From the PowerShell console, if the script is in the current directory and the filename
has spaces:

PS C:\> & '.\My Script.psl’

From the PowerShell console, if the script is in a different directory:

PS C:\> & 'C:\Temp\My Script.psl’'

From the PowerShell console, using dot sourcing. Dot sourcing persists variables
in session:

PS C:\> . '.\My Script.psl’

PS C:\> . 'C:\Temp\My Script.psl’'

From the Command Prompt:

C:\>powershell.exe -ExecutionPolicy RemoteSigned -File "C:\
PowerShell\My Script.psl"

Common aliases

Command

Alias

Foreach-Object
Where-Object
Sort-Object
Compare-Object
Write-Output
help
Get-Content
Get-ChildItem
Copy-Item
Move-Item

Remove-Item

%, Foreach
?, Where
Sort
compare, diff
echo, write
man

cat, gc, type
dir, gci, Is
copy, cp, cpi
mi, move, mv

del, erase, rd, ri, rm, rmdir

Iy
©
©

SQL Server and PowerShell CheatSheet

Displaying output

PS C:\> Get-Command -Name "*Write*"

Special characters

Command Alias
Get-Process gps, pPs
Stop-Process Kill, spps
Get-Location gl, pwd
Set-Location cd, chdir, sl
Clear-Host clear, cls
Get-History h, ghy, history

-CommandType Cmdlet

Cmdlet

Description

Write-Debug

Write-Error

Write-EventLog
Write-Host
Write-Output
Write-Progress

Write-Verbose

Write-Warning

Displays a debug message to the console
Typically used with:
$DebugPreference = "Continue"

Displays a non-terminating error message
to the console

Writes a message to Windows Event Log
Displays a string message to the host
Writes an object to the pipeline

Display a progress bar

Displays a verbose message to the console
Typically used with:

"Continue"

SVerbosePreference =

Displays a warning message to the console

Special Special character .
Explanation
character name
S Dollar Variable
S_ Dollar underscore Current object in pipeline

500

Appendix A

Special Special character .
Explanation
character name
. Command chaining; output from one command
| Pipe)
to input to another
h Backtick Escape or continuation character
@ At sign Array
Hash sign Comment
[l Square brackets For indexes and strongly typing variables
() Parentheses For array members; For calling functions
& Ampersand Call operator
* Star or asterisk Wildcard
% Percent Alias for Foreach-Object
? Question mark Alias for Where-Object
+ Plus Addition; String concatenation operator

Special variables

Special variable

Explanation

$_
sargs
Serror
Shome
Shost
Smatch
Sprofile
SPSHome
SPSISE
$pid
$pwd
Strue
sfalse
snull

Current pipeline object

Arguments passed to a function

Array that stores all errors

User's home directory

Host information

Regex matches

Path to profile, if available

Install directory of PowerShell
PowerShell Scripting Environment object
Process ID (PID) of PowerShell process
Present Working Directory

Boolean true

Boolean false

Null value

501

SQL Server and PowerShell CheatSheet

Common operators

Note that many operators perform case-insensitive string comparisons by default. If you want
to do case-sensitive matching, prepend with c. For example, -ceq,

-clike, -cnotlike.

PowerShell Traditional Explanation
-eq == Equal to
-ne <>0r I= Not equal to
-match Match using regex; searches anywhere in
—notmatch the string
-contains Collection match. Does the item exist in the
—notcontains array or collection?
. Wildcard match
-like
* (asterisk) for zero or more characters
-notlike))
? (question mark) for any single character
-clike o)
Case-sensitive wildcard match
-cnotlike
-not ! Negation
-1t < Less than
-le <= Less than or equal to
-gt > Greater than
-ge >= Greater than or equal to
-and && Logical and
-or || Logical or
-bor | Bitwise or
-band & Bitwise and
-Xor ~ Exclusive or

Common date-time format strings

PS C:\> Get-Date -Format "yyyy-MMM-dd-hhmmtt"

502

Format pattern

Explanation

tt A.M./P.M. designator
ss Seconds with leading zero
mm Minutes with leading zero

Appendix A

Format pattern Explanation

ad Day of the month with leading
zero

dddd Full name of the day of the week

hh 12 hour clock with leading zero

HH 24 hour clock with leading zero

MM Numeric month with leading zero

MMM Abbreviated month name

MMMM Full month name

vy Two digit year

VYYY Four digit year

Comment based help

To enable comment-based help, put a special comment header at the top of your script, or in
the first block of your function.

<#
.SYNOPSIS

Creates a full database backup
.DESCRIPTION

Creates a full database backup using specified instance name and
database name

This will place the backup file to the default backup directory
of the instance

.PARAMETER instanceName
instance where database to be backed up resides
.PARAMETER databaseName
database to be backed up
.EXAMPLE
PS C:\PowerShell> .\Backup-Database.psl -instanceName "QUERYWORKS\
SQLO1" -databaseName "pubs"
.EXAMPLE

PS C:\PowerShell> .\Backup-Database.psl -instance "QUERYWORKS\
SQLO1" -database "pubs"
.NOTES

To get help:
Get-Help .\Backup-Database.psl
.LINK
http://msdn.microsoft.com/en-us/library/hh245198.aspx
#>

503

SQL Server and PowerShell CheatSheet

» Single line comments start with a hash sign:

#this is a single line comment

» Block comments start with <# and end with #>:

<#

this is a block comment

#>

A here-string is a string that often contains large blocks of text. It starts with @" and must end

with a line that contains only "@ (no other characters or spaces before it):

Squery = @"

INSERT INTO SampleXML
(FileName, XMLStuff,

VALUES ('$xmlfile!,
ll@

Common regex characters and patterns

FileExtension)
'$xml', 'sfileextension')

-

* Ur

patternl |pattern2
pattern{m}
pattern{m,n}
pattern{m, }
[abcd]

[a-d]

Escape character

Beginning of line

End of line

Matches zero or many times

Matches zero or one time

Matches one or more times

Matches a single character except newline
Matches either pattern

Matches pattern exactly m times

Matches minimum m to a maximum n times
Matches minimum m times

Matches any character in set

Matches any character in range

504

Appendix A

[*abcd] Matches characters NOT in set
\n Newline

\r Carriage Return

\b Word boundary

\B Non word boundary

\d Digit; 0-9

\D Non digit

\w Word character; equivalent to [A-Za-z0-9_]
\W Non word character

\s Space character

\S Non white space character

Arrays and hash tables

An array is a collection of items:

#simple array
$simplearray = @(1,2,3,4)
$simplearray.Count

#array of processes consuming >30% CPU
$processes = (Get-Process | Where CPU -gt 30)

A hash table is a collection of key-value pairs. It is also referred to as an associative array:

#simple hash
$simplehash = @{

"BCIT" = "BC Institute of Technology"
"CST" = "Computer Systems Technology"
"CIT" = "Computer Information Technology"

}

$simplehash.Count
#hash containing process IDs and names
S$hash = @{}

Get-Process | Foreach {$hash.Add($_ .Id, $_.Name)}
$hash.GetType ()

505

SQL Server and PowerShell CheatSheet

Arrays and loops

>

The while loop repeats a block while the condition evaluates to true:

Scommand = ""

while (Scommand.ToLower () -NotMatch "quit" -and $command.ToLower ()
-NotMatch "g")

{

Scommand = Read-Host "Enter your command >"

}

The for loop repeats for a predefined number of iterations:

for (Scounter = 0; Scounter -1t 10; Scounter++)

{

Write-Verbose "Processing item S$counter"

}

The Foreach loop repeats for all items in the collection:

$processes = (Get-Process | Where CPU -gt 30)
foreach ($process in $processes)

{

Write-Verbose "$ ($Sprocess.ProcessName) :$ ($Sprocess.CPU) "

}
Note that this Foreach loop can be rewritten as:

Get-Process | Where CPU -gt 30 |
Foreach {
Write-Verbose "$($_.ProcessName) : $($_.CPU)"

}

506

If/Elself/Else:

Scourse = "COMP4677"

if ($course -eq "COMP4677") {
"SQL Server Administration”

}

elseif (Scourse -eq "COMP4678")
"SQL Server Development"

Appendix A

else {
"Don't know"

}

» Switch:

switch (Scourse)
"COMP4677" { "SQL Server Administration" }
"COMP4678" { "SQL Server Development" }
Default { "Don't Know" }

}

Functions are a block or blocks of code that are encapsulated into a construct that has a
name, can be reused, and can be called with parameters.

» Sample function:

function Get-SQLErrorLogs
{
param
(
[Parameter (Position=0,Mandatory=3$true)]
[alias ("instance")]
[string] $instanceName
)
Import-Module SQLPS -DisableNameChecking | Out-Null

#replace this with your instance name

$server = New-Object -TypeName Microsoft.SglServer.Management.
Smo.Server -ArgumentList $instanceName

Write-Output S$server.ReadErrorLog ()

}

» Sample function call:

Get-SQLErrorLogs -instanceName "KERRIGAN" |
Where LogDate -gt "2012-09-01"

507

SQL Server and PowerShell CheatSheet

Common Cmdlets

Utility ConvertFrom-Csv

ConvertFrom-Json
ConvertTo-Csv
ConvertTo-Html
ConvertTo-Json
ConvertTo-Xml
Export-Clixml
Export-Csv
Format-List
Format-Table
Get-Alias
Get-Date
Get-Member
Import-Clixml
Import-Csv
Read-Host

Management Get-ChildItem
Get-Content
Get-EventLog
Get-HotFix
Get-Process
Get-Service
Get-WmiObject
New-WebServiceProxy
Start-Process
Start-Service

Security ConvertFrom-SecureString
ConvertTo-SecureString
Get-Credential
Get-ExecutionPolicy

Set-ExecutionPolicy

508

Appendix A

Import SQLPS module

Introduced in PowerShell V2:

Import-Module SQLPS -DisableNameChecking

Add SQL Server Snapins

Introduced in PowerShell V1, it can be used with SQL Server 2008/R2:

>

>

SQL Server Snapins to load:

SQLServerCmdletSnapinl00

SglServerProviderSnapinl00

To load:

if (! (Get-PSSnapin -Name SQLServerCmdletSnapinl00 -ErrorAction
SilentlyContinue))

{

Add-PSSnapin SQLServerCmdletSnapinl00

|

Add SQL Server Assemblies

Need to be loaded for PowerShell V1 to work with SQL Server from the PowerShell prompt:

>

Common SQL-related Assemblies:

Microsoft.
Microsoft.
Microsoft.
Microsoft.
Microsoft.

SglServer.
SglServer.
SglServer.
SglServer.
SglServer.

To load (if needed):

Add-Type -Assembly "Microsoft.SglServer.Smo,

Culture=neutral, PublicKeyToken=89845dcd8080cc9ol™"

Smo
SmoExtended
SglEnum
SmoEnum

ConnectionInfo

Version=11.0.0.0,

509

SQL Server and PowerShell CheatSheet

Getting credentials

» Interactive, prompts user for the username and password:
Scredential = Get-Credential

» Non interactive, password saved as SecureString into the file and read back and
passed to Get-Credential:

#icreate file
Read-Host -AsSecureString | ConvertFrom-SecureString |
Out-File "C:\password.txt" -Force

#read back credentials

Spw = (Get-Content "C:\password.txt") |
ConvertTo-SecureString
Susername = "QUERYWORKS\Administrator"

Scredential = New-Object System.Management.Automation.PSCredential
Susername, S$Spw

Running and blocking SQL Server processes

#assume S$server has already been defined

$server.EnumProcesses () |

Where BlockingSpid -ne 0 |

Select Name, Spid, Command, Status, Login, Database, BlockingSpid |
Format-Table -AutoSize

Read file into an array

$instances = Get-Content "C:\Temp\sglinstances.txt"

SQL Server-Specific Cmdlets

Get-Command -CommandType Cmdlet -Module SQLPS, SQLASCMDLETS |

Select Name, Module |
Sort Module, Name |

Format-Table -AutoSize

Results:
Add-RoleMember SQLASCMDLETS
Backup-ASDatabase SQLASCMDLETS

510

Invoke-ASCmd
Invoke-ProcessCube
Invoke-ProcessDimension
Invoke-ProcessPartition
Merge-Partition
New-RestoreFolder
New-RestoreLocation
Remove-RoleMember
Restore-ASDatabase

Add-SglAvailabilityDatabase

Add-SglAvailabilityGroupListenerStaticIp

Backup-SglDatabase
Convert-UrnToPath
Decode-SglName
Disable-SglAlwaysOn
Enable-SglAlwaysOn
Encode-SglName
Invoke-PolicyEvaluation
Invoke-Sglcmd
Join-SglAvailabilityGroup
New-SglAvailabilityGroup
New-SglAvailabilityGroupListener
New-SqglAvailabilityReplica
New-SglHADREndpoint
Remove-SglAvailabilityDatabase
Remove-SglAvailabilityGroup
Remove-SglAvailabilityReplica
Restore-SglDatabase
Resume-SglAvailabilityDatabase
Set-SqglAvailabilityGroup
Set-SglAvailabilityGroupListener
Set-SglAvailabilityReplica
Set-SglHADREndpoint
Suspend-SqglAvailabilityDatabase
Switch-SglAvailabilityGroup
Test-SqglAvailabilityGroup
Test-SglAvailabilityReplica
Test-SglDatabaseReplicaState

SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS

Appendix A

511

SQL Server and PowerShell CheatSheet

Invoke-SqiCmd

SinstanceName = "KERRIGAN"
$dbName = "AdventureWorks2008R2"
Squery = "SELECT TOP 10 * FROM Person.Person"

$fileName = "C:\Temp\ResultsFromPassThrough.csv"

#export query results to CSV

Invoke-Sglcmd -Query $query -ServerInstance $instanceName -Database
$dbName |

Export-Csv -LiteralPath $fileName -NoTypeInformation

Create SMO Server Object

An SMO object, or SQL Server Management Object, allows you to programmatically access
and manipulate SQL Server:

Import-Module SQLPS -DisableNameChecking

$instanceName = "KERRIGAN"

$Sserver = New-Object -TypeName Microsoft.SglServer.Management.Smo.Server
-ArgumentList $instanceName

Create SSRS Proxy Object

$ReportServerUri = "http://localhost/ReportServer/ReportService2010.
asmx"

Sproxy = New-WebServiceProxy -Uri S$ReportServerUri -UseDefaultCredential

#list all children
$proxy.ListChildren("/", S$true)

512

Appendix A

Create SSIS Object (SQL Server

2005/2008/2008R2)

For most SSIS objects included in Package Deployment Model:

Add-Type -AssemblyName "Microsoft.SglServer.ManagedDTS, Version=11.0.0.0,
Culture=neutral, PublicKeyToken=89845dcd8080cc9ol™"

Sapp = New-Object Microsoft.SglServer.Dts.Runtime.Application

Create an SSIS Object (SQL Server 2012)

For most SSIS objects used in the new SQL Server 2012 Project Deployment Model:

Import-Module SQLPS -DisableNameChecking

Add-Type -AssemblyName "Microsoft.SglServer.Management.
IntegrationServices, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89
845dcd8080cc9ol™

SinstanceName = "KERRIGAN"

SconnectionString = "Data Source=$instanceName;Initial
Catalog=master;Integrated Security=SSPI;"

Sconn = New-Object System.Data.SglClient.SglConnection S$connectionString

$SSISServer = New-Object Microsoft.SglServer.Management.
IntegrationServices.IntegrationServices $conn

Create SSAS Object

Import-Module SQLASCMDLETS -DisableNameChecking

#Connect to your Analysis Services server

$SSASServer = New-Object Microsoft.AnalysisServices.Server

513

PowerShell Primer

In this appendix, we will cover:

» What is PowerShell, and why learn another language
» Setting up the environment

» Running PowerShell scripts

» Basics—points to remember

» Scripting syntax

» Converting script into functions

Introduction

This appendix is a very short primer to get you up and running with PowerShell. We cover
the basics of the language and the syntax; however, we will not go into in-depth details
and variations. A host of recommended resources is available in Appendix C, Resources
to augment what you learn from this book.

What is PowerShell, and why learn another

ELLTETL]S

PowerShell is both a scripting environment and a scripting language meant to support
administrators and developers alike in automating and integrating processes and environments.

You may already be familiar with other tools or languages that help accomplish your task,
and you may be asking why you should even bother learning PowerShell. It is important to
note that PowerShell is just another tool, but could be a very powerful one if used in the
appropriate situations.

PowerShell Primer

There are different reasons for using PowerShell:

1.

Running a script is faster than clicking around the Ul:

If we minimize clicks, or eliminate them in some cases, the task can potentially be
done so much faster. Think about compressing, copying, archiving, and renaming
multiple files. If we had to rely on the Ul, this task may take much longer. However,
if we can bake the logic into a script, and run the script once, then the task can be
accomplished much faster and more efficiently.

Learning, and mastering, one language instead of five or ten:

Instead of using a duct-taped mishmash of scripting languages (batch file for some
items, VBScript, Perl, COM), we can now use one single language to handle most tasks.

Leveraging the .NET library:

The .NET library provides a rich collection of classes that pretty much covers
most programmatic items you can think of such as forms, database connectivity,
networking, and the like.

Taking advantage of the fact that PowerShell is baked into different products:

More and more Microsoft products are being shipped with a growing number of
PowerShell cmdlets because PowerShell scripting is part of Microsoft's Common
Engineering Criteria program (http://www.microsoft.com/cec/en/us/cec
-overview.aspx#man-windows). Windows Server, Exchange, Active Directory,
SharePoint, SQL Server, to name a few, all have some PowerShell support.

Setting up the Environment

Before we can start talking about PowerShell, we first need to make sure you have access to
an environment that has PowerShell.

PowerShell V3 comes natively with the following operating systems: Windows 8 and Windows
Server 2012.

Although Windows 7, Windows Server 2008, and Windows Server 2008 R2 come with
PowerShell V2, you can also install PowerShell V3 on these operating systems. You can
download the Windows Management Framework 3.0 (WMF 3.0), which contains PowerShell
V3 from http://www.microsoft.com/en-us/download/details.aspx?id=34595.

If you have been testing the Beta or CTP versions of PowerShell V3, you will need to uninstall
these previous versions prior to installing the Released to Manufacturing (RTM) version, which
is the official publicly available version.

516

http://www.microsoft.com/en-us/download/details.aspx?id=34595

Appendix B

Running PowerShell scripts

It is now time to run your first script!

Through shell or through ISE

You can run ad hoc commands through the shell or through the Integrated Scripting
Environment (ISE).

To use the PowerShell console, you can launch the shell by opening Start | All Programs

| Accessories | Windows PowerShell | Windows PowerShell. Often when managing your
servers, you may need to run this as Administrator (right-click on the PowerShell icon and
select Run as Administrator).

Once the console is ready, you can type your commands and press Enter to see the results.
For example, to display ten (10) running processes, you can use the Get -Process cmdlet,
as shown in the following screenshot:

= Administrator: Windows Powershell
Windows PowerShell
Copyright (C) 2011 Microsoft Corporation. All rights reserwved.

PS5 C:\Users\Administrator> Get-Process | Select -First 10

CPU(=s) Id ProcessName
1076 armswvc
1580 cmd
336
1620
21384

40 2 3216

1500 4681 89 4620

2544 283K 2 328

10648 41352 ! 4 4 ! 380

9680 8212 o 3521

ColUsersiAdministrators>

517

PowerShell Primer

You can also use the ISE, and to launch the ISE, go to Start | All Programs | Accessories
| Windows PowerShell | Windows PowerShell ISE. Similar to the shell, you can type your
command and press the Run button (green arrow icon).

E] Administrator: Windows PowerShell ISE

File Edit View Debug Add-ons Help
NeR & ax|9 [""EF"".,

| sample Script.psl | Untitled2.ps1* | Untitled3.pst™ x
1 Get-Process Select -First 10

PS C:\Users\Administrator=

.

Ps C:‘\Users\Administrator> Get-Process | Select -First 10

Handles NPM(K) PM(K) WS(K) wM{M) CPU(s) Id ProcessName
71 8 1124 438 42 0.14 1076 armswvc
21 4 1940 1372 41 0.11 1580 cmd
37 5 1184 2024 59 0.88 336 conhost
36 5 1780 4472 43 0.19 1620 conhost
34 5 988 3536 42 0.03 2184 conhost
4 408 \

% More details about the ISE are covered in Chapter 1, Getting Started
s with SQL Server and PowerShell.

Typically, you would save your commands in a script file with the .ps1 extension, and run
them from the shell in few different ways:
1. From PowerShell console, using the call operator (&):
PS C:\ > & "C:\PowerShell\My Script.psl"

2. From PowerShell console, using dot sourcing. Dot sourcing simply means you prepend
a dot and space to your invocation. You would invoke your script by using dot sourcing
to persist variables and functions in your session:

PS C:\PowerShell > . ".\My Script.psl"
PS C:\> . "C:\PowerShell\My Script.psl"
3. From a command prompt:

C:\>powershell.exe -ExecutionPolicy RemoteSigned -File
"C:\PowerShell\My Script.psl"

518

Appendix B

Execution policy

PowerShell scripts are not authorized to just run.

Remember the "l Love You" virus? It took off because it was so easy to launch a script just
by double-clicking the .vbs file.

To avoid problems such as this, PowerShell scripts by default are blocked from running.
This means you cannot just accidentally double-click a PowerShell script and execute it.

The rules that determine which PowerShell scripts can run are contained in the Execution
Policy. This will need to be set ahead of time. The different settings are:

Execution Policy Description

Restricted Default execution policy

PowerShell will not run any scripts

AllSigned PowerShell will run only signed scripts
RemoteSigned PowerShell will run signed scripts, or locally created scripts
Unrestricted PowerShell will run any scripts, signed or not
Bypass PowerShell will not block any scripts, and will prevent any
prompts or warnings
Undefined PowerShell will remove set execution policy in current
user scope

To determine what your current setting is, you can use Get-ExecutionPolicy:

PS C:\>Get-ExecutionPolicy

If you try to run a script without setting the proper execution policy, you may get an error
similar to this:

File C:\Sample Script.psl cannot be loaded because the execution
of scripts is disabled on this system. For more information, see
about execution policies.

To change the execution policy, use Set -ExecutionPolicy:
PS C:\>Set-ExecutionPolicy RemoteSigned

Typically, if you need to run a script that does a lot of administrative tasks, you will need to
run the script as administrator.

To learn more about execution policies, run:

help about execution policies

519

PowerShell Primer

For more information about how to sign your script, use:
help about signing

Basics—points to remember

Let's explore some PowerShell basic concepts.

Cmdlets, pronounced as "commandlets”, are the foundation of PowerShell. Cmdlets are
small commands, or specialized commands. The naming convention for cmdlets follows
the Verb-Noun format, such as Get - Command or Invoke-Expression.

PowerShell V3 boasts a lot of new cmdlets, including cmdlets to manipulate JSON
(ConvertFrom-Json, ConvertTo-Json), web services (Invoke-RestMethod, Invoke-
WebRequest), and background jobs (Register-JobEvent, Resume-Job, Suspend-Job).
In addition to

built-in cmdlets, there are also downloadable community PowerShell extensions such as
SQLPSX, which can be downloaded from http://sqlpsx.codeplex.com/.

Many cmdlets accept parameters. Parameters can either be specified by name or by position.
Let's take a look at a specific example. The syntax for the Get-ChildItem cmdlet is:

Get-ChildItem [[-Path] <string[]l>] [[-Filter] <strings>]
[-Include <string[]l>] [-Exclude <stringl[]s>]
[-Recurse] [-Force] [-Name]

[-UseTransaction] [<CommonParameterss]

The Get-ChildItem cmdlet gets all the "children" in a specified path. For example, to get
all files with a . txt extension in the C:\Temp folder, we can use Get-ChildItem with the
-Path and -Filter parameters:

Get-ChildItem -Path "C:\Temp" -Filter "*.csv"

We can alternatively omit the parameter names by passing the parameter values by
position. When passing parameters by position, the order in which the values are passed
matters. They need be to in the same order in which the parameters are defined in the
Get-ChildItem cmdlet:

Get-ChildItem "C:\Temp" "*.csv"

To learn the order in which parameters are expected to come, you can use the
Get-Help cmdlet:

Get-Help Get-ChildItem

520

http://sqlpsx.codeplex.com/

Appendix B

Learning PowerShell

The best way to learn PowerShell is to explore the cmdlets, and try them out as you learn
them. The best way to learn is to explore. Young Jedi, you need to get acquainted with these
three (3) cmdlets: Get -Command, Get -Help, and Get -Member.

Get-Command

There are many cmdlets. And that list is just going to get bigger. It will be hard to remember
all the cmdlets except for the handful you use day in and day out. Besides using the search
engine, you can use the Get - Command cmdlet to help you look for cmdlets.

Here are a few helpful cmdlets:

» To list all cmdlets:

Get -Command

» To list cmdlets with names that match some string patterns, you can use the —Name
parameter and the asterisk (*) wildcard:

Get-Command -Name "*Event*"

» To get cmdlets from a specific module:
Get-Command -Module SQLASCMDLETS

Get-Help

Now that you've found the command you're looking for, how do you use it? The best way to get
help is Get -Help (no pun intended). The Get -Help cmdlet provides the syntax of a cmdlet,
examples, and some additional notes or links where available.

Get-Help Backup-SglDatabase

Get-Help Backup-SglDatabase -Examples

Get-Help Backup-SglDatabase -Detailed

Get-Help Backup-SglDatabase -Full

Get-Help Backup-SglDatabase -Online #opens browser

The different parameters—Examples, Detailed, Full, and Online—will determine the
amount of information that will be displayed. The Online parameter opens up the online
help in a browser.

Get-Member

To really understand a command or an object and explore what's available, you can use
the Get -Member cmdlet. This will list all the properties, methods of an object, or anything
incoming from the pipeline.

sdt = (Get-Date)
$dt | Get-Member

521

PowerShell Primer

Starter notes

We are almost ready to start learning the syntax. However, here are a few last notes, some
points to keep in mind about PowerShell as you learn it. Keep a mental note of these items,
and you are ready to go full steam ahead.

PowerShell is object oriented, and works with .NET

PowerShell works with objects, and can take advantage of the objects' methods and properties.
PowerShell can also leverage the ever-growing .NET framework library. It can import any of the
.NET classes, and reuse any of the already available classes.

You can find out the base class of an object by using the Get Type method, which comes with
all objects.

sdt = Get-Date
$dt .GetType () #DateTime is the base type

To investigate an object, you can always use the Get -Member cmdlet.
$dt | Get-Member

To leverage the .NET libraries, you can import them in your script. A sample import of the .NET
libraries follows:

#load the Windows.Forms assembly
Add-Type -AssemblyName "System.Windows.Forms"

There will be cases when you may have multiple versions of the same assembly name.

In these cases, you will need to specify the strong name of the assembly with the Add-Type
cmdlet. This means you will need to supply the AssemblyName, Version, Culture, and
PublicKeyToken:

#load the ReportViewer WinForms assembly
Add-Type -AssemblyName "Microsoft.ReportViewer.WinForms,
Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc9ol™"

To determine the strong name, you can open up C: \Windows\assembly and navigate to the
assembly you want to load. You can either check the displayed properties, or right-click on the
particular assembly and select Properties.

522

Appendix B

+ Local Disk (C:) = Windows = assembly - - l‘ﬂj I Search System32

iry * Sharewith = MNew folder

Assembly Name < | Version | Culture | Public Key Token | Proces..,
:@Mia’nsn&.ReporWiewer.\’u’ebForms.resnurces 11.0.0.0 zh-CHS 29845dcd3080c091 MSIL
3@Miansoﬁ.ReporWiewer.‘n"a'ebForms.resnurces 11.0.0.0 zh-CHT 89845dcdB080cca 1 M3IL
&I Microsoft. ReportViewer, WinForms 11.0.0.0 29845dcdB3080cc91 MSIL I
1@ Microsoft, ReportViewer, WinForms 10.0.0.0 b03f5f7f11d50a3a MSIL
3@Miu‘nsnﬁ.ReporWiewer.*a'inForms.resnurces 11.0.0.0 de 89845dcdB080cca 1 M3IL

Cmdilets may have aliases or you can create one

We may already know some scripting or programming languages, and may already have
preferences on how we do things. For example, when listing directories from the Command
Prompt, we may be on autopilot when we type dir. In PowerShell, listing directories can be
accomplished by the Get -ChildItem cmdlet. Fear not, you can still use dir if you prefer.
If there is another name you want to use instead of Get -ChildItem, you can create your
own alias.

To find out aliases of a cmdlet, you can use Get-Alias. For example, to get the aliases of
Get-ChildItem, you can execute:

Get-Alias -Definition "Get-ChildItem"
To create your own alias, you can use New-Alias:
New-Alias "list" Get-ChildItem

Here are some of the common aliases already built-in with PowerShell:

Remove-ltem
Get-Process
Stop-Process

Cmdlet Alias
Foreach-Object %, Foreach
Where-Object ?, Where
Sort-Object Sort
Compare-Object compare, diff
Write-Output echo, write
help man
Get-Content cat, gc, type
Get-Childltem dir, gci, Is
Copy-ltem copy, ¢p, cpi
Move-ltem mi, move, mv

del, erase, rd, ri, rm, rmdir

gps, ps
Kill, spps

523

PowerShell Primer

Cmdlet Alias
Get-Location gl, pwd
Set-Location cd, chdir, sl
Clear-Host clear, cls
Get-History h, ghy, history

You can chain commands

You can take the result from one command and use it as an input to another command.
The operator to chain commands is a vertical bar (|) called pipe. This feature makes
PowerShell really powerful. This can also make your statements more concise.

If you are familiar with the Unix/Linux environment, pipes are a must-have and are incredibly
valuable tools.

Let's take an example. We will export the newest log entries (time and source fields only) to a
text file in JSON format:
1. We need to get the newest log entries:
Get-EventLog -LogName Application -Newest 10

2. We need only the time and source fields. Based on what we get from step 1, we need
to excute the following query:

Select Time, Source

3. We need to convert to JSON. Using step 2 results as input, we need to execute the
following query:
ConvertTo-Jdson

4. We need to save to a file. We now want to take what we have in step 3 and put it into
a file:

Out-File -FilePath "C:\Temp\json.txt" -Force

524

Appendix B

5. The full command will be:

Get-EventLog -LogName Application -Newest 10 |
Select Time, Source |

ConvertTo-Json |

Out-File -FilePath "C:\Temp\json.txt" -Force

This is just a simple example of how you can chain commands, but should give you an idea
how it can be done.

Filter left, format right

When you chain commands, especially when your last actions are for formatting the result,
you want to do this as efficiently as possible. Otherwise, you may use a lot of resources to
format data, and end up only needing to display a few. It is best to trim your data first, before
you pass them down the pipeline for formatting.

Package and reuse

Functions and modules allow you to package up the logic you built in your scripts, and

put it in reusable structures. A function can be simply described as a callable code block.
A module allows you to put together a library of variables and functions that can be loaded
into any session, and allow the use of these variables and functions.

Your goal should be to package up most of what you've already built in scripts, and put it into
functions, and later compile them into a module. Note that you can also create your functions
so they behave like cmdlets.

Converting your scripts into functions is tackled at a later section
i in this appendix.

525

PowerShell Primer

Common Cmdlets

Typically, cmdlets are categorized to their main purpose or functionality based on the verb
used in their name. Here is a partial list of cmdlets to explore. Note that many cmdlet names
are self-documenting:

Category Cmdlet

Utility ConvertFrom-Csv

ConvertFrom-Json
ConvertTo-Csv
ConvertTo-Html
ConvertTo-Json
ConvertTo-Xml
Export-Clixml
Export-Csv
Format-List
Format-Table
Get-Alias
Get-Date
Get-Member
Import-Clixml
Import-Csv

Read-Host
Management Get-ChildItem

Get-Content
Get-EventLog
Get-HotFix
Get-Process
Get-Service
Get-WmiObject
New-WebServiceProxy
Start-Process

Start-Service

526

Appendix B

Category Cmdlet

Security ConvertFrom-SecureString

ConvertTo-SecureString
Get-Credential

Get-ExecutionPolicy

Set-ExecutionPolicy

Scripting syntax

We will now dive into the specifics of PowerShell syntax.

Statement terminators

A semicolon is typically a mandatory statement terminator in many programming and scripting
languages. PowerShell considers both a newline and a semicolon as statement terminators,
although using the newline is more common, that's why you won't see a lot of semicolons in
most PowerShell scripts. There is a caveat for using the newline; that is, the previous line must
be a complete statement before it gets executed.

Escape and line continuation

The backtick () is a peculiar character in PowerShell, and it has double meaning. You can
typically find this character in your keyboard above the left Tab key, and is in the same key
as the tilde (~) symbol.

The backtick is the escape character in PowerShell. Some of the common characters that
need to be escaped are:

Escaped Character Description
“n Newline

“r Carriage return
o Single quote

Double quote
"0 Null

PowerShell Primer

PowerShell also uses the backtick as a line continuation character. You may find yourself writing
a long chain of commands and may want to put different parts of the command onto different
lines to make the code more readable. If you do, you need to make sure to put a backtick at the
end of each line you are continuing, otherwise PowerShell treats the newline as a statement
terminator. You also need to make sure there are not any extra spaces after the backtick:

<~

Invoke-Sglcmd
-Query Squery °
-ServerInstance $instanceName
-Database $dbName

Variables are placeholders for values. Variables in PowerShell start with a dollar ($) sign.

<~

Sa = 10

By default, variables are loosely and dynamically typed—meaning the variable assumes the
data type based on the value of the content:

$Sa = 10

Sa.GetType () #Int32
Sa = "Hello"
$Sa.GetType () #String

$a = Get-Date
Sa.GetType () #DateTime

Note how the data type changes based on the value we assign to the variable. You can
however create strongly typed variables.

[int]sa = 10
Sa.GetType () #Int32

When we have strongly typed variables, we can no longer just haphazardly assign it any value.
If we do, we will get an error:

Sa = "Hello"

<# Error

Cannot convert value "Hello" to type "System.Int32". Error: "Input
string was not in a correct format."

At line:3 char:1

+ $a = "Hello"

528

Appendix B

+ CategoryInfo : MetadataError: (:) [],
ArgumentTransformationMetadataException

+ FullyQualifiedErrorId : RuntimeException
#>

We have also mentioned in the previous section that PowerShell is object oriented. Variables
in PowerShell are automatically created as objects. Depending on the data type, variables are
packaged with their own attributes and methods. To explore what properties and methods are
available with a data type, use the Get -Member cmdlet:

1 %a = Get-Date 3

2 %a | Get-Member
IUI_UIIBI rmeEaen IIIH LLlR =4 Sy LW - IIIH IUI_IJlll_.dI Hme=acn IIII;I‘q;
ToOADate Method double ToOADate()
ToSByte Method System.SByte ToSByte(System.IForm
ToShortDateString Method string ToShortDateString()
ToShortTimeString Method string ToShortTimeString()
ToSingle Method float ToSingle(System.IFormatProwvi
ToString Method string ToString(), string ToStrin
ToType Method System.0Object ToType(type conversi
ToUIntlé Method System.UInt16 ToUInt16(System.IFor
ToUInt32 Method System.UInt32 ToUInt32(System.IFor
ToUIntée4 Method System.UInt64 ToUInt64(System.IFo
ToUniversalTime Method System.DateTime ToUniversalTime()
Date Property System.DateTime Date {get;}
Day Property System.Int32 Day {get;}
DayOfwWeek Property System.Day0Ofweek DayOfWeek {get;}
DayOfyear Property System.Int32 DayOfyYear {get;}
Hour Property System.Int32 Hour {get;}
Kind Property System.DateTimeKind Kind {get;}
Millisecond Property System.Int32 Millisecond {get;}

te

Here-string

There may be times when you need to create a string variable that will contain multiple lines
of code. You should create these as here-string.

A here-string is a string that often contains large blocks of text. It starts with @" and must
end with a line that contains only "@. For the here-string terminating character pair, make sure
this is placed in its own line, and there are no other characters and no spaces before or after it.

Squery = @"

INSERT INTO SampleXML

(FileName, XMLStuff,FileExtension)

VALUES ('$xmlfile', 'S$Sxml', 'sfileextension')
"@

529

PowerShell Primer

String interpolation

When working with strings, you need to remember that using a double quote evaluates
enclosed variables, that is variables are replaced with their values. For example:

Stoday = Get-Date
Write-Host "Today is S$today"

#result
#Today is 06/12/2012 19:48:24

This behavior may sometimes cause issues especially if you need to use multiple variables in
continuation, as in the following case where we want to combine $name, and underscore (_),
$ts and . txt to create a timestamped filename.

Sname = "belle"
Sts = Get-Date -Format yyyy-MMM-dd
$filename = "$name S$ts.txt"

This will give an incorrect result, because it will look for $name_and $ts, but since it cannot
find $name_, the final filename we getis 2012-Jun-06.txt and notbelle 2012-
Jun-06.txt.

To resolve this issue, we can use any of the following to ensure proper interpolation:

S$filename = "$(Sname) $(Sts) .txt"

Write-Host $filename

$filename = "${name} ${ts}.txt"
Write-Host $filename

$filename = "{0} {1}.txt" -f $name, $ts
Write-Host $filename

A single quote, on the other hand, preserves the actual variable name and does not interpolate
the value:

Stoday = Get-Date
Write-Host 'Today is S$today!'

#iresult
#Today is S$today

530

Appendix B

You can also store actual commands in a string. However, this is treated as a string unless you
prepend it with an ampersand (&)-which is PowerShell's invoke or call operator.

$Scmd = "Get-Process"

Scmd
&Scmd

The operators used in PowerShell may not be readily familiar to you even if you have already
done some programming before. This is because the operators in PowerShell do not use the
common operator symbols.

#just displays Get-Process, treated as string
#actually executes Get-Process

Traditional .
PowerShell aditiona Description
Operator

-eq == Equal to
-ne <> or != Not equal to
-match Match using regex; searches anywhere in
-notmatch string
-contains Collection match. Does item exist in array
—notcontains or collection?

Wildcard match
-like)

* (asterisk) for zero or more characters
-notlike) .

? (question mark) for any single character
-clike .)

Case—sensitive wildcard match
-cnotlike
-not ! Negation
-1t < Less than
-le <= Less than or equal to
-gt > Greater than
-ge >= Greater than or equal to
-and && Logical and
-or || Logical or
-bor | Bitwise or
-band & Bitwise and
-xXor » Exclusive or

Note that many operators perform case-insensitive string comparisons by default. If you want
to do case-sensitive matching, prepend with c. For example, -ceq, -clike, -cnotlike.

531

PowerShell Primer

Displaying messages

Often we will need to display or log messages as our scripts execute. PowerShell provides a
few cmdlets to help us accomplish this.

Get-Command -Name "*Write*" -CommandType Cmdlet

This should give a list of our Write- related cmdlets:

Cmdlet Description

Write-Debug Display debug message to console

Typically used with

SDebugPreference = "Continue"
Write-Error Display non-terminating error message to console
Write-EventLog Write message to Windows Event Log
Write-Host Display string message to host
Write-Output Write an object to pipeline
Write-Progress Display a progress bar
Write-Verbose Display verbose message to console

Typically used with
SVerbosePreference = "Continue"

Write-Warning Display warning message to console

Although some of these cmdlets seem similar, there are some fundamental differences.
For example, Write-Host and Write-Output seem to display the same messages on
screen. Write-Host however simply displays a string, but Write-Ouput writes objects
that have properties that can be queried, and can eventually be used in the pipeline.

We use Write-Verbose a fair bit in the recipes in this book. Write-Verbose does not
automatically display messages on the host. It relies on the $VerbosePreference setting.
By default, $VerbosePreference is setto SilentlyContinue, but it can also be set to
Continue, which allows us to display messages used with Write-Verbose to screen.

SVerbosePreference = "Continue"
$folderName = "C:\BLOB Files\"

#using PowerShell V2 style Where-Object syntax
Get-ChildItem $folderName |
Where-Object {$.PSIsContainer -eq $false} |

ForEach-Object {
$blobFile = $_

532

Appendix B

Write-Verbose "Importing file $($blobFile.FullName)..."

}

SVerbosePreference = "SilentlyContinue"

This is an elegant way of turning all messages on or off, without needing to change the script.
This can also be used as a switch and can be passed to the script or a function.

Comments are important in any programming or scripting language. Comments are often
used to document logic, and sometimes a chain of changes to the script.

Single line comments start with a hash sign (#):
#this is a single line comment
Block comments start with <# and end with #>:

<#
this is a block comment
#>

PowerShell also supports what's called Comment Based Help. This feature allows you to
put a special comment block at the start of your script, or in the beginning of your function,
that allows the script or function to be looked up using Get -Help. A sample of this type of
comment block follows:

<#
.SYNOPSIS
Creates a full database backup
.DESCRIPTION
Creates a full database backup using specified instance name and
database name

This will place the backup file to the default backup directory of
the instance

.PARAMETER instanceName
instance where database to be backed up resides
.PARAMETER databaseName
database to be backed up
.EXAMPLE
PS C:\PowerShell> .\Backup-Database.psl -instanceName "QUERYWORKS\
SQLO1" -databaseName "pubs"
.EXAMPLE
PS C:\PowerShell> .\Backup-Database.psl -instance "QUERYWORKS\
SQLO1" -database "pubs"
.NOTES

533

PowerShell Primer

To get help:
Get-Help .\Backup-Database.psl
.LINK
http://msdn.microsoft.com/en-us/library/hh245198.aspx
#>

To look up the help, you can simply type a Get -Help followed by the script filename, or the
function name:

PS>Get-Help .\Backup-Database.psl

Special variables

PowerShell also has some special variables. These special variables do not need to be
created ahead of time, they are already available. Some of the special variables are:

Special Variable Description

S Current pipeline object

Sargs Arguments passed to a function
Serror Array that stores all errors

Shome User's home directory

Shost Host information

Smatch Regex matches

Sprofile Path to profile, if available

$PSHome Install directory of PowerShell

SPSISE PowerShell Scripting Environment object
$pid Process ID (PID) of PowerShell process
Spwd Present working directory

Strue Boolean true

sfalse Boolean false

snull Null value

PowerShell supports conditional logic using if/else statements or switch statements.
These two constructs allow you to check for a condition, and consequently execute different
blocks of code if the condition is met or not.

Let's look at an example of an if/else block:

Sanswer = Read-Host "Which course are you taking?"
if (Sanswer -eq "COMP 4677")

Appendix B

}

Write-Host "That's SQL Server Administration"

elseif ($Sanswer -eq "COMP 4678")

{
}

Write-Host "That's SQL Server Development"

else

{
}

Write-Host "That's another course"

Note that the elseif and else blocks are optional. They don't need to be defined if you do
not have a separate code to execute if the condition is not met.

An equivalent switch block can be written for the above code:

Sanswer = Read-Host "Which course are you taking?"

switch (Sanswer)

{

}

"COMP 4677"

{

Write-Host "That's SQL Server Administration"

}

"COMP 4678"

{

Write-Host "That's SQL Server Development"

}

default

{

Write-Host "That's another course"

Note that these two constructs can be functionally equivalent for simple comparisons.
The choice to use one over the other hinges on preference and readability. If there are
many choices, the switch can definitely make the code more readable.

Regular Expressions

Regular expressions, more commonly referred to as regex, specify a string pattern to match.
Regex can be extremely powerful, and is often used when dealing with massive amounts of

text. The area of bioinformatics, for example, tends to rely heavily on regular expressions for
gene pattern matching.

535

PowerShell Primer

Regex can also be quite confusing especially for beginners. It has its own set of patterns and
wildcards, and it is up to you to put these together to ensure you are matching what you need
to be matched.

% See the recipe Testing Regular Expressions in Chapter 9,
S

Helpful PowerShell Snippets.

Arrays are collections of items. Often we find ourselves needing to store a group of items,
either for further processing, or for exporting.

#ways to create an array
SmyArray = @() #empty
SmyArray = 1,2,3,4,5
SmyArray = @(1,2,3,4,5)

#tarray of processes consuming >30% CPU
SmyArray = (Get-Process | Where CPU -gt 30)

Arrays can either be of a fixed size or not. Fixed-size arrays are instantiated with a fixed
number of items. Some of the typical methods such as Add or Remove cannot be used
with fixed-size arrays:

SmyArray = @()

(
SmyArray += 1,2,3,4,5
SmyArray += 6,7,8
SmyArray.Add (9) #error because array is fixed size

Removing an item from a fixed array is a little bit tricky. Although arrays have Remove and
RemoveAt methods—to remove based on value and index respectively—we cannot use these
with fixed-size arrays. To remove an item from a fixed-size array, we will need to reassign the
new set of values to the array variable.

#remove 6
SmyArray = SmyArray -ne 6

#remove 7
SmyArray = SmyArray -ne 7

To create a dynamic-sized array, you will need to declare the array as an array list, and
add items using the Add method. This also supports removing items from the list using
the Remove method.

SmyArray = New-Object System.Collections.ArrayList
SmyArray.Add (1)

536

Appendix B

SmyArray.Add (2)
SmyArray.Add (3)
SmyArray.Remove (2)

We can use indices to retrieve information from the array:

#iretrieve first item
SmyArray [0]

#iretrieve first 3 items
SmyArray [0..2]

We can also retrieve based on some comparison or condition:

#iretrieving anything > 3
SmyArray -gt 3

A hash is also a collection. This is different from an array, however, because hashes are
collections of key-value pairs. Hashes are also called associative arrays, or hash tables.

#simple hash
$simplehash = @{

"BCIT" = "BC Institute of Technology"
"CST" = "Computer Systems Technology"
"CIT" = "Computer Information Technology"

}

$simplehash.Count

#hash containing process IDs and names

$hash = @{}

Get-Process | Foreach {$hash.Add($.Id, $_.Name)}
Shash.GetType ()

To access items in a hash, we can refer to the hash table variable, and retrieve based on the
stored key:

$simplehash["BCIT"]
$simplehash.BCIT

A loop allows you to repeatedly execute block(s) of code based on some condition. There are
different types of loop support in PowerShell. For all intents and purposes, you may not need
to use all of these types, but it's always useful to be aware of what's available and doable.

537

PowerShell Primer

There is a while loop, where the condition is tested at the beginning of the block:

$1 = 1;
while($i -le 5)
{

#code block

Si

Si++

}

There is also support for the do while loop, where the condition is tested at the bottom of
the block:

si =1

do

{
#code block
Si
Si++

Jwhile ($i -le 5)

The for loop allows you to loop a specified number of times, based on a counter you create at
the for header.

for($i = 1; $i -le 5; $i++)
{

$i
}

There is yet another type of loop, a foreach loop. This loop is a little bit different because
it works with arrays or collections. It allows a block of code to be executed for each item in
a collection.

Sbackupcmds = Get-Command -Name "*Backup*" -CommandType Cmdlet
foreach ($backupcmd in $backupcmds)

{

$backupcmd | Get-Member

}

If you're a developer, this code looks very familiar to you. In PowerShell, however, you can use
pipelining to make your code more concise.

Get-Command -Name "*Backup*" -CommandType Cmdlet |
Foreach { $ | Get-Member}

538

Appendix B

Error Handling

When developing functions or scripts, it is important to think beyond just the functionality you
are trying to achieve. You also want to handle exceptions, or errors, when they happen. We all
want our scripts to gracefully exit if something goes wrong, rather than display some rather
intimidating or cryptic error messages.

Developers in the house will be familiar with the concept of try/catch/finally. This
is a construct that allows us to put the code we want to run in one block (try), exception
handling code in another (catch), and any must-execute housekeeping blocks in a final
block (finally).

Sdividend = 20
Sdivisor = 0

try

{

$result = $dividend/$divisor

}

catch

{
Write-Host ("======" * 20)
Write-Host "Exception S$Serror[0]"
Write-Host ("======" * 20)

}

finally

Write-Host "Housekeeping block"
Write-Host "Must execute by hook or by crook"

}

Converting script into functions

A function is a reusable, callable code block(s). A function can accept parameters, and can
produce different results based on values that are passed to it.

A typical anatomy of a PowerShell function looks like:

function Do-Something
{
<#
comment based help
#>

539

PowerShell Primer

param
(
#parameters
)
#blocks of code

}

To illustrate, let's create a very simple function that takes a report server URL and lists all
items in that report server. This function will take in a parameter for the report server URL,
and another switch called $ReportsOnly, which can toggle displaying between all items,
or only report items.

function Get-SSRSItems
{
<#
comment based help
#>
param
(
[Parameter (Position=0,Mandatory=Strue)]
[alias ("reportServer")]
[string] SReportServerUri,
[switch] SReportsOnly
)

Write-Verbose "Processing $ (SReportServerUri) ..."
Sproxy = New-WebServiceProxy °
-Uri $ReportServerUri
-UseDefaultCredential
if ($SReportsOnly)
{
$proxy.ListChildren("/", $true) |
Where TypeName -eqg "Report"

}

else

{
}

$Sproxy.ListChildren("/", S$true)

}

To call this function, we can pass in the value for -ReportServerUri and also set the
—-ReportsOnly switch:

$server = "http://serverl/ReportServer/ReportService2010.asmx"

Get-SSRSItems -ReportsOnly -ReportServerUri $server |
Select Path, TypeName |
Format-Table -AutoSize

540

Appendix B

To allow your function to behave more like a cmdlet and work with the pipeline, we will need
to add the [CmdletBinding ()] attribute. We can also change the parameters to enable
values to come from the pipeline by using ValueFromPipeline=3$true. Inside the function
definition, we will need to add three blocks:

>

BEGIN

Preprocessing; anything in this block will be executed once when the function is called.
PROCESS

Actual processing that is done for each item that is passed in the pipeline.

END

Post-processing; this block will be executed once before the function terminates
executing.

We will also need to specify in the parameter block that we want to accept input from
the pipeline.

A revised function follows:

function Get-SSRSItems

{

<#

comment based help
#>
[CmdletBinding ()]
param
(

[Parameter (Position=0,Mandatory=$Strue,
ValueFromPipeline=$true,
ValueFromPipelineByPropertyName=Strue)]

[alias ("reportServer")]

[string] SReportServerUri,

[switch] SReportsOnly

)

BEGIN

{

}

PROCESS

{
Write-Verbose "Processing $ ($SReportServerUri) ..."
Sproxy = New-WebServiceProxy ~

-Uri SReportServerUri -UseDefaultCredential

if ($ReportsOnly)

{

541

PowerShell Primer

$proxy.ListChildren("/", Strue) |
Where TypeName -eq "Report"

}

else

{

$proxy.ListChildren("/", $true)

Write-Verbose "Finished processing"

}

To invoke, we can pipe an array of servers to the Get - SSRSItems function, and this
automatically maps the servers to our -ReportServerUri parameter since we specified
ValueFromPipeline=$true. Note that Get -SSRSItems will get invoked for each value
in our array:

$servers = @("http://serverl/ReportServer/ReportService2010.asmx",
"http://server2/ReportServer/ReportService2010.asmx")

$servers |
Get-SSRSItems -Verbose -ReportsOnly |
Select Path, TypeName |

Format-Table -AutoSize

More about PowerShell

We have barely touched PowerShell basics, but this appendix should give you an idea how
to use PowerShell. To learn more about PowerShell, check out Appendix C, Resources, which
lists a number of other resources you might find useful with your PowerShell adventure.

542

Resources

Resources

There are a lot of good websites, articles, webcasts, blogs, and bloggers on PowerShell.
This is by no means an exhaustive list of resources. The list below is simply meant to help
you jumpstart your adventure with PowerShell and SQL Server. Bear in mind that beyond
this list, there are a lot more to explore! Enjoy the adventure!

PowerShell Books

PowerShell V3
» PowerShell in Depth: An administrator's guide
by Don Jones, Richard Siddaway, and Jeffery Hicks
» PowerShell and WMI
by Richard Siddaway

» Windows PowerShell for Developers
by Doug Finke

PowerShell V2
» Learn Windows PowerShell in a Month of Lunches
by Don Jones
» PowerShell 2.0 TFM

by Don Jones

Resources

» PowerShell and WMI
by Richard Siddaway

» PowerShell in Practice
by Richard Siddaway

» Windows PowerShell 2.0 Administrator's Pocket Consultant
by William R. Stanek

» Windows PowerShell Cookbook

by Lee Holmes

» Windows PowerShell in Action, Second Edition

by Bruce G. Payette

PowerShell V2 Free E-books
» Administrator's Guide to PowerShell Remoting
by Dr. Tobias Weltner and Aleksandar Nikolic
http://powershell.com/cs/media/p/4908.aspx

» Effective Windows PowerShell
by Keith Hill
http://rkeithhill.wordpress.com/2009/03/08/effective-windows-
powershell-the-free-ebook/

» Layman's Guide to PowerShell Remoting
by Ravikanth Chaganti
http://www.ravichaganti.com/blog/?p=1305

» Mastering PowerShell (free e-book)
by Dr. Tobias Weltner
http://powershell.com/cs/blogs/ebookv2/default.aspx

» PowerShell 2.0 One Cmdlet at a Time
by Jonathan Medd

http://www.jonathanmedd.net/wp-content/uploads/2010/09/
PowerShell 2 One Cmdlet at a Time.pdf

http://powershell.com/cs/media/p/4908.aspx
http://powershell.com/cs/media/p/4908.aspx
http://rkeithhill.wordpress.com/2009/03/08/effective-windows-powershell-the-free-ebook/
http://rkeithhill.wordpress.com/2009/03/08/effective-windows-powershell-the-free-ebook/
http://rkeithhill.wordpress.com/2009/03/08/effective-windows-powershell-the-free-ebook/
http://www.ravichaganti.com/blog/?p=1305
http://www.ravichaganti.com/blog/?p=1305
http://powershell.com/cs/blogs/ebookv2/default.aspx
http://powershell.com/cs/blogs/ebookv2/default.aspx
http://www.jonathanmedd.net/wp-content/uploads/2010/09/PowerShell_2_One_Cmdlet_at_a_Time.pdf
http://www.jonathanmedd.net/wp-content/uploads/2010/09/PowerShell_2_One_Cmdlet_at_a_Time.pdf
http://www.jonathanmedd.net/wp-content/uploads/2010/09/PowerShell_2_One_Cmdlet_at_a_Time.pdf

Appendix C

» Secrets of PowerShell Remoting
by Don Jones and Dr. Tobias Weltner
http://powershellbooks.com/SecretsOfPowerShellRemoting. zip

» WMI Query Language (WQL) via PowerShell
by Ravikanth Chaganti
http://www.ravichaganti.com/blog/?page 1d=2134

PowerShell Blogs and Sites

» PowerShell.com

http://www.powershell.com

» PowerShell Team—Windows PowerShell Blog

http://blogs.msdn.com/powershell/

» PowerShell Magazine

http://www.powershellmagazine.com/

» PoshCode—PowerShell Code Repository
http://poshcode.org/

» PowerShell Survival Guide

http://social.technet.microsoft.com/wiki/contents/articles/183.
windows-powershell-survival-guide-en-us.aspx

» Technet Script Repository
http://gallery.technet .microsoft.com/scriptcenter/

» PowerShell V3 Guide

http://social.technet.microsoft.com/wiki/contents/
articles/4725.powershell-v3-guide-en-us.aspx

» Hey Scripting Guy! Blog
http://blogs.technet.com/b/heyscriptingguy/

» Scripting with PowerShell—5 Part Webcast
http://technet.microsoft.com/en-US/scriptcenter/dd742419.aspx

545

http://powershellbooks.com/SecretsOfPowerShellRemoting.zip
http://powershellbooks.com/SecretsOfPowerShellRemoting.zip
http://www.ravichaganti.com/blog/?page_id=2134
http://www.ravichaganti.com/blog/?page_id=2134
http://www.powershell.com/
http://www.powershell.com/
http://blogs.msdn.com/powershell/
http://blogs.msdn.com/powershell/
http://www.powershellmagazine.com/
http://www.powershellmagazine.com/
http://poshcode.org/
http://poshcode.org/
http://social.technet.microsoft.com/wiki/contents/articles/183.windows-powershell-survival-guide-en-us.aspx
http://social.technet.microsoft.com/wiki/contents/articles/183.windows-powershell-survival-guide-en-us.aspx
http://social.technet.microsoft.com/wiki/contents/articles/183.windows-powershell-survival-guide-en-us.aspx
http://gallery.technet.microsoft.com/scriptcenter/
http://gallery.technet.microsoft.com/scriptcenter/
http://social.technet.microsoft.com/wiki/contents/articles/4725.powershell-v3-guide-en-us.aspx
http://social.technet.microsoft.com/wiki/contents/articles/4725.powershell-v3-guide-en-us.aspx
http://social.technet.microsoft.com/wiki/contents/articles/4725.powershell-v3-guide-en-us.aspx
http://blogs.technet.com/b/heyscriptingguy/
http://blogs.technet.com/b/heyscriptingguy/
http://technet.microsoft.com/en-US/scriptcenter/dd742419.aspx
http://technet.microsoft.com/en-US/scriptcenter/dd742419.aspx

Resources

PowerShell Bloggers

» Don Jones

http://www.windowsitpro.com/topics/powershell-scripting/
don-jones-on-powershell

» Richard Siddaway
http://richardspowershellblog.wordpress.com/

» Jeffery Hicks
http://jdhitsolutions.com/blog/

» Shay Levy
http://blogs.microsoft.co.il/blogs/scriptfanatic/

» Lee Holmes
http://www.leeholmes.com/blog/

» Ed Wilson (Hey Scripting Guy!)
http://blogs.technet.com/b/heyscriptingguy/

» Ravikanth Chaganti
http://www.ravichaganti.com/blog/

» Dr. Tobias Weltner
http://powershell.com/cs/blogs/tobias/
» Niklas Goude

http://www.powershell .nu/

» Keith Hill
http://rkeithhill.wordpress.com/

» Doug Finke
http://www.dougfinke.com

» Thomas Lee
http://t£109.blogspot.ca/

» Joel Bennett
http://huddledmasses.org/

546

http://www.windowsitpro.com/topics/powershell-scripting/don-jones-on-powershell
http://www.windowsitpro.com/topics/powershell-scripting/don-jones-on-powershell
http://www.windowsitpro.com/topics/powershell-scripting/don-jones-on-powershell
http://www.windowsitpro.com/topics/powershell-scripting/don-jones-on-powershell
http://richardspowershellblog.wordpress.com/
http://richardspowershellblog.wordpress.com/
http://richardspowershellblog.wordpress.com/
http://jdhitsolutions.com/blog/
http://jdhitsolutions.com/blog/
http://jdhitsolutions.com/blog/
http://blogs.microsoft.co.il/blogs/scriptfanatic/
http://blogs.microsoft.co.il/blogs/scriptfanatic/
http://blogs.microsoft.co.il/blogs/scriptfanatic/
http://www.leeholmes.com/blog/
http://www.leeholmes.com/blog/
http://www.leeholmes.com/blog/
http://blogs.technet.com/b/heyscriptingguy/
http://blogs.technet.com/b/heyscriptingguy/
http://www.ravichaganti.com/blog/
http://www.ravichaganti.com/blog/
http://powershell.com/cs/blogs/tobias/
http://powershell.com/cs/blogs/tobias/
http://www.powershell.nu/
http://www.powershell.nu/
http://www.powershell.nu/
http://rkeithhill.wordpress.com/
http://rkeithhill.wordpress.com/
http://rkeithhill.wordpress.com/
http://www.dougfinke.com/
http://www.dougfinke.com/
http://www.dougfinke.com/
http://tfl09.blogspot.ca/
http://tfl09.blogspot.ca/
http://tfl09.blogspot.ca/
http://huddledmasses.org/
http://huddledmasses.org/
http://huddledmasses.org/
http://www.jonathanmedd.net/

Appendix C

» Jonathan Medd
http://www.jonathanmedd.net/

» Steven Murawski

http://blog.usepowershell.com

» Aleksandar Nikolic

http://powershellers.blogspot.ca/

SQL Server and PowerShell Bloggers

» Allen White
http://sqglblog.com/blogs/allen white/
» Laerte Junior

http://shellyourexperience.wordpress.com/

» Aaron Nelson
http://www.sglvariant.com

» Edwin Sarmiento
http://bassplayerdoc.blogspot.ca/

» Chad Miller
http://sevl7.com

» Max Trinidad

http://www.maxtblog.com/2011/10/sgl-server-powershell-smo-
simple-way-to-change-sgl-user-passwords/

» Donabel Santos

http://www.sglmusings.com

PowerShell Webcasts and Podcasts

» MSDN Channel 9 PowerShell Webcasts
http://channel9.msdn.com/tags/PowerShell/

» PowerScripting Podcasts

http://powerscripting.wordpress.com/

547

http://www.jonathanmedd.net/
http://www.jonathanmedd.net/
http://blog.usepowershell.com/
http://blog.usepowershell.com/
http://blog.usepowershell.com/
http://powershellers.blogspot.ca/
http://powershellers.blogspot.ca/
http://sqlblog.com/blogs/allen_white/
http://sqlblog.com/blogs/allen_white/
http://sqlblog.com/blogs/allen_white/
http://shellyourexperience.wordpress.com/
http://shellyourexperience.wordpress.com/
http://shellyourexperience.wordpress.com/
http://www.sqlvariant.com/
http://www.sqlvariant.com/
http://www.sqlvariant.com/
http://bassplayerdoc.blogspot.ca/
http://bassplayerdoc.blogspot.ca/
http://bassplayerdoc.blogspot.ca/
http://sev17.com/
http://sev17.com/
http://www.maxtblog.com/2011/10/sql-server-powershell-smo-simple-way-to-change-sql-user-passwords/
http://www.maxtblog.com/2011/10/sql-server-powershell-smo-simple-way-to-change-sql-user-passwords/
http://www.maxtblog.com/2011/10/sql-server-powershell-smo-simple-way-to-change-sql-user-passwords/
http://www.maxtblog.com/2011/10/sql-server-powershell-smo-simple-way-to-change-sql-user-passwords/
http://www.sqlmusings.com/
http://www.sqlmusings.com/
http://www.sqlmusings.com/
http://channel9.msdn.com/tags/PowerShell/
http://channel9.msdn.com/tags/PowerShell/
http://powerscripting.wordpress.com/
http://powerscripting.wordpress.com/

Resources

PowerShell Tools

» Idera PowerShell Plus
http://www.idera.com/PowerShell/powershell-plus/

» Quest PowerGUI
http://powergui.org/index. jspa

» Sapien PrimalScript
http://www.sapien.com/software/primalscript

SQLPSX is a set of modules that wrap SMO objects into easier-to-use functions. This is a project
maintained and contributed to by Chad Miller, Mike Shepard, Laerte Junior, Steve Murawski,
Bernd Kriszio, and Max Trinidad.

http://sglpsx.codeplex.com/

PowerShell Community Extensions is a set of modules that extend PowerShell with additional
cmdlets, functions, aliases, and filters. This project is maintained by R Keith Hill.

http://pscx.codeplex.com/

548

http://sqlpsx.codeplex.com/
http://sqlpsx.codeplex.com/
http://pscx.codeplex.com/

Creating a
SQL Server VM

In this appendix we will cover:

» Terminology

» Downloading software

» VM details and accounts

» Creating an empty virtual machine

» Installing Windows Server 2008 R2 as Guest 0S
» Configuring a domain controller

» Creating domain accounts

» Installing SQL Server 2012 on a VM

» Installing PowerShell V3

Introduction

| find the best way to learn new software or application is by creating a virtual machine
that has the new software on it. | typically use SQL Server VMs for my development and
administration classes. | want the students to have full autonomy over the machines they
are using, so that they can try different features and configurations without worrying about
wrecking their own machines.

Creating a SQL Server VM

Creating and working with virtual machines may seem confusing at first

for the novice. | originally wrote a step-by-step guide for my students at the

following URL:

http://www.sglmusings.com/wp-content/uploads/2009/09/
% Step-by-Step-Guide-to-Creating-a-SQL-Server-VM-Using-

v VMWare.pdf

This original document uses VMWare Server, which is no longer available

and supported.

What you see in this appendix is an updated version, specifically using

VMWare Player and SQL Server 2012.

Terminology

Let's start off with some terminologies:

Terminology Description
Virtual Machine, This is essentially a standalone computer installed within
or VM another platform/0OS.

A virtual machine is also sometimes called a guest machine.
This typically provides a complete system platform with its
own set of operating system, hardware configurations, and
installed software packages, but still runs on top of a host
machine that has the main OS (operating system), and the
physical hardware.

There are different applications that can create and run
virtual machines. A partial list includes:

» VMWare Player (free): http://www.vmware.com/
products/player/

» VMWare Workstation, or other products: http://
www . vimware . com/products/workstation/
overview.html

» Windows Server Hyper-V Server 2008 R2: http://
www.microsoft.com/en-us/server-cloud/
hyper-v-server/default.aspx

» MS Virtual PC: http://www.microsoft.com/
windows/virtual-pc/

» Virtual Box: https://www.virtualbox.org/
wiki/Downloads

550

http://www.sqlmusings.com/wp-content/uploads/2009/09/Step-by-Step-Guide-to-Creating-a-SQL-Server-VM-Using-VMWare.pdf
http://www.sqlmusings.com/wp-content/uploads/2009/09/Step-by-Step-Guide-to-Creating-a-SQL-Server-VM-Using-VMWare.pdf
http://www.sqlmusings.com/wp-content/uploads/2009/09/Step-by-Step-Guide-to-Creating-a-SQL-Server-VM-Using-VMWare.pdf

Appendix D

Terminology

Description

ISO File

Service Account

This is a disk image—an archive file of an optical disc
in a format defined by the International Organization
for Standardization (ISO). This contains archived
CD/DVD content.

In a VM, an ISO file can be treated as a real CD/DVD.
All you need to do is to point the CD/DVD settings to
the ISO file path.

If you need to, you can also burn the ISO to CD/DVD or
create ISO files using any CD/DVD image file processing
tool, such as:

» PowerlSO: http://www.poweriso.com/
» MagiclSO: http://www.magiciso.com/

» FreelSO Creator: http://www.minidvdsoft.
com/isocreator/

» Nero Burning Software: http://www.nero.com/
enu/

This is the account used to run services running on a
Windows operating system.

Downloading software

We will use VMWare Player, a free virtual machine application, and the trial versions for
Windows Server 2008 R2, SQL Server 2012, Windows Management Framework, and
optionally Visual Studio 2010.

» Download and install VMWare Player from the following URL:

http://www.vmware.com/products/player/

You can find the VMWare Player documentation at http://www.vmware.com/
support/pubs/player pubs.html.

» Download Windows Server 2008 R2 with SP1 trial version ISO file (or if you have a
licensed copy, use that) from the following URL:

http://technet.microsoft.com/en-us/evalcenter/dd459137.aspx

» Download SQL Server 2012 trial version ISO file (or if you have a licensed copy, use

that) from:

http://www.microsoft.com/en-us/download/details.aspx?1d=29066

551

http://www.vmware.com/products/player/
http://www.vmware.com/products/player/
http://www.vmware.com/support/pubs/player_pubs.html
http://www.vmware.com/support/pubs/player_pubs.html
http://technet.microsoft.com/en-us/evalcenter/dd459137.aspx
http://technet.microsoft.com/en-us/evalcenter/dd459137.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=29066
http://www.microsoft.com/en-us/download/details.aspx?id=29066

Creating a SQL Server VM

» Download the Windows Management Framework. As we will be running Windows
Server 2008 R2, you will need to download the 64-bit version of the WINDOWS6 .
1-KB2506143-x64 .MSU file from the following URL:

http://www.microsoft.com/en-us/download/details.aspx?i1d=34595

(Optional) If you are planning to create some SQLCLR assemblies, you will need

at least Visual Studio 2010 Professional. SQL Server Data Tools (previously known
as BIDS, or Business Intelligence Development Studio) is not sufficient for creating
the assembilies.

» Download the Visual Studio 2010 trial version ISO (or if you have a licensed copy,
use that) from the following URL:

http://www.microsoft.com/en-us/download/details.aspx?1d=12187

VM details and accounts

The following table lists accounts and VM details that we will use in this appendix:

Item Description

Virtual Machine Name SQL2012VM

Virtual Machine Computer Name KERRIGAN

Virtual Machine Computer UserName: Administrator

Administrator Account Password: P@ssword

SQL Server Instances Default: KERRIGAN
Named: KERRIGAN\SQLO1

SQL Server Service Account UserName: QUERYWORKS\sqlservice
Password: P@ssword

SQL Server Agent Account UserName: QUERYWORKS\sqlagent
Password: P@ssword

Additional domain accounts QUERYWORKS\aterra
QUERYWORKS\jraynor
QUERYWORKS\mhorner

552

http://www.microsoft.com/en-us/download/details.aspx?id=34595
http://www.microsoft.com/en-us/download/details.aspx?id=34595
http://www.microsoft.com/en-us/download/details.aspx?id=12187
http://www.microsoft.com/en-us/download/details.aspx?id=12187

Appendix D

One more note to log in to the VM when it's ready:

Item Description
Logging in to the VM Click on VM | Send Ctrl + Alt + Del
VM.~ Help 2
Settings... Ctrl+D
Removable Devices 3
Enter Unity
Power 3

Send Ctrl+Alt+Del

Reinstall VMware Tools...

Additional VMWare shortcuts can be found here:

http://www.vmware.com/support/ws55/doc/
ws_learning keyboard shortcuts.html

Creating an empty virtual machine

Determine first if your host is a 64-bit machine. You can go to Start | All Programs |
Accessories | System Tools | System Information. You should see it under System
Type. If you see x86, then you will need to use the 32-bit versions of the software.

Once ready, we will create our empty virtual machine. We will call our virtual machine
SQL2012VM:

1. Launch VMWare Player. To do so, go to Start | VMWare | VMWare Player.

. Whhware
& Virtual Network Editor
Wihware Player

2. Onthe initial screen, click on the Create New Virtual Machine button.

You can also do this by going to File | Create New Virtual Machine.

553

http://www.vmware.com/support/ws55/doc/ws_learning_keyboard_shortcuts.html
http://www.vmware.com/support/ws55/doc/ws_learning_keyboard_shortcuts.html
http://www.vmware.com/support/ws55/doc/ws_learning_keyboard_shortcuts.html

Creating a SQL Server VM

3. Inthe Welcome screen, select | will install operating system later as shown in the
following screenshot:

Welcome to the New Virtual Machine Wizard

A virtual machine is like a physical computer; it needs an operating
system. How will you install the guest operating system?

Install from:

-

() Installer disc:

|& DVD RW Drive (D:)

(7)) nstaller disc image file (iso):

F:\MSDMN\en_sql_server_2012_developer_edition_x8t + Browse...

(@) Twill install the operating system later.

The virtual machine will be created with a blank hard disk.

Help

4. Onthe Select a Guest Operating System screen, choose Microsoft Windows for the
guest operating system, and choose Windows Server 2008 R2 x64 from the Version
drop-down menu.

New Virtual Machi -gj

Select a Guest Operating System
Which operating system will be installed on this virtual machine?

Guest operating system

Microsoft Windows
Linux

Novell NetWare
Sun Solaris

[Other

Version

Windows Server 2008 R2 x4 -

Appendix D

5. We will name our virtual machine SQ1.2012VM as shown in the following screenshot.
If you prefer, you can also change the location of your VM.

Hame the Virtual Machine
What name would you like to use for this virtual machine?

Virtual machine name:

SQL2012VM

Location:

C:\Users\belle\Pocuments\Virtual Machines\SQL2012VM Browse. ..

6. For our virtual machine, we will allocate 40 GB disk space. Feel free to adjust it as
you see fit for your own use. You will want to allocate a bigger disk space if you want
to use this VM for some data warehouses and cubes.

New Virtual Machine

Specify Disk Capacity
How large do you want this disk to be?

The virtual machine's hard disk is stored as one or more files on the host
computer's physical disk. These file(s) start small and become larger as
you add applications, files, and data to your virtual machine.

Maximum disk size a0.0 [~

- |

Recommended size for Windows Server 2008 R2 x64: 40 GB

(@) Store virtual disk as a single file
(") Split virtual disk into 2 GB files

Splitting the disk makes it easier to move the virtual machine to another
computer.

7. Onthe Ready to Create screen, click on Finish.

555

Creating a SQL Server VM

Installing Windows Server 2008 R2 as

Guest OS

To install the operating system, we first need to mount the Windows Server ISO and play the
virtual machine. After that, we can follow the installation wizard.

1. Launch VMWare Player. Go to Start | VMWare | VMWare Player.

2. Select SQL2012VM and then select Edit virtual machine settings, as shown in the
following screenshot:

SQLVM2KE

SQL2012VM

State: Powered Off
05: Windows Server 2008 R2 x64
Version: Workstation 6.5-7.0 virtual machine
RAM: 1024 MB

@ Play virtual machine

&9 Edit virtual machine settings /

3. Let'sincrease the memory settings—adjust this based on your available hardware
configurations. For our purposes we will increase memory to 2 GB (or 2048 MB), but
you can definitely set this higher if you wish. Just make sure you have enough memory
still left for your host OS, and other VMs that you may be running simultaneously.

556

Virtual Machine

Hardware | Options

Device Summary

 vemory ssmB |
ﬁ Processors 1

{=Hard Disk (SCSI) 40 GB

(=)co/OVD (IDE) Auto detect

El Floppy Auto detect

TEInetwork Adapter MAT

aUSE Controller Present
#)) sound Card Auto detect
Eoisplay Auto detect

Mernory

Specify the amount of memory allocated to this virtual
machine. The memory size must be a multiple of 4 MB.

Memary for this virtual machine:

I =
L) 2048% MB
& &
4 7293
£ Guest OS recommended minimum: 1024 MB
A Recommended memory: 1024 MB
A Maximum recommended memary: 7192 MB

{(Memaory swapping may occur beyond this size,)

Maximum configurable memary: 32768 MB

|

4. Select CD/DVD, and choose the Use ISO image file radio button. Navigate to
Windows Server 2008 R2 IS0, and click on OK.

Hardware | Options

Device Summary
i Mermary 2043 MB

% Processors i

=iHard Disk (SC51) 40 GE
(5)co/oVD (D) Auto detect
1 Floppy Auto detect

FSInetwork Adapter NAT

@USE Controller Present
#)) sound Card Auto detect
Elbisplay Auto detect

Device status
[] connected

Connect at power on

Connection

(7 Use physical drive:

Auto detect |

@ Use 150 image file:

1-us-GRMSXEVAL_EM_DVD.iso | Browse... I

557

Appendix D

Creating a SQL Server VM

5. Go back to the main VMWare Player screen and, while SQL2012VM is selected,
click on Play Virtual Machine.

ﬁ Home

@ SQLVM2KE

SQL2012VM

State: Powered Off
0S: Windows Server 2008 R2 %64
Version: Workstation 6.5-7.0 virtual machine
RAM: 1024 MB

Eﬁ Play virtual machine /

‘/_/@’ Edit virtual machine settings

6. Since we have mounted the ISO, the Windows Server installation screen will
be displayed when the VM starts. Now we will need to follow the installation
for Windows Server 2008 R2.

For the installation language we will use English, and keyboard will be US.

When prompted to install, select Install Now.

7. When asked about the operating system to install we will choose Windows Server

2008 R2 Standard x64, but feel free to choose a different edition that you want
to explore.

558

Appendix D

S, £7 Install Windows

Select the operating system you want to install

Operating system | Architecture | Date modified |
W tandard (Full Installation) 11/21/2010
Windows Server 2008 R2 Standard (Server Core Installation) x04 11/21/2010
Windows Server 2008 R2 Enterprise (Full Installation) x04 11/21/2010
Windows Server 2008 R2 Enterprise (Server Core Installation) x04 11/21/2010
Windows Server 2008 R2 Datacenter (Full Installation) x04 11/21/2010
Windows Server 2008 R2 Datacenter (Server Core Installation) x04 11/21/2010
Windows Web Server 2008 R2 (Full Installation) x04 11/21/2010
Windows Web Server 2008 R2 (Server Core Installation) x04 11/21/2010

Description:
This option installs the complete installation of Windows Server. This installation includes the entire
user interface, and it supports all of the server roles.

Accept the license terms, and click on Next.

9. When prompted for the type of installation, select Custom.

@ £ Install Windows N

Which type of installation do you want?

Upgrade

Upgrade to a newer version of Windows and keep your files, settings, and programs.

'1 The option to upgrade is only available when an existing version of Windows is
running. We recemmend backing up your files before you proceed.

Custom (advanced)
Install a new copy of Windows. This optien does not keep your files, settings, and
b programs. The option to make changes to disks and partitions is available when you
&' start your computer using the installation disc. We recommend backing up your files
before you proceed.

559

Creating a SQL Server VM

10. In the Install Windows dialog, select Disk O Unallocated space.

@ £ Install Windows [X

Where do you want to install Windows?

| MNarme | Total Size Free Space | Type |

|_‘~',. Disk 0 Unallocated Space 40.0 GB 40.0 GB |

11. Let the installation complete. Note that the VM will be restarted a few times by the
installation process.

£7 Install Windows
e

]

Installing Windows...

That's all the inforrmation we need right now. Your computer will restart several times during
installation.

Copying Windows files (0%) ...
Expanding Windows files
Installing features

Installing updates

Completing installation

560

Appendix D

12. In one of the restarts you will be prompted to change the password.

%/ Windows Server 2008
~ Standard

Provide the administrator password as shown in the following screenshot:

Administrator

— — i -._,--\.\‘
XTI -

Create a password reset disk...

When done, click on the arrow. This will log you in to your new VM.

561

Creating a SQL Server VM

13. By default, the Initial Configuration Tasks screen will be displayed when you first
log in.

. =18 x|
ﬁ Perform the following tasks to configure this server ‘4. gﬂgﬁm Server20gr2
¢) Provide Computer Information E]] Specifying computer information
'?k Activate Windows Product ID: Mot activated
£
e Set time zone Time Zone: (UTC-08:00) Pacific Time (US & Canada)
_—5' Corfigure networking Local Area Connection: |Pv4 address assigned by DHCP, |Pv6 enabled
ﬁ Provide computer name and Full Computer Name: WIN-QVJROOKD5US
domain Workgroup: WORKGROUP
[) Update This Server h] Updating your Windows server
Enable automatic updating and Updates: Mot corfigured
9 feedback Feedback: Windows Emor Reporting off
Mot participating in Customer Experience Improvement Program
‘:‘I Download and install updates Checked for Updates: MNever
Installed Updates: Never
&) Customize This Server H] Customizing your server
i‘ Al L Dol LL ;I

™ Donat show this window at logon Close |
3 e 3 . 12:53 AM
o] B & [$ B g

14. Under the Provide Computer Information section, click on Provide computer name
and domain and set the following options:

a. Inthe Computer description, type SQL2012 VM.
b. Click on the Change button.

c. Inthe Computer name textbox, type KERRIGAN.

562

System Properties

Computer Name | Hardware | Advanced I F{ernotel

Eh-hl Windows uses the following information to identify your computer
= onthe network.

Computer description: [SQL2012 VM

For example: "l15 Production Server” ar
"Accounting Server”.

Full computer name: WINGVIROOKDSUS
Workgroup: WORKGROUP

To rename this computer or change its domain or
workgroup, click Change. 28t

ﬂ Computer Name [Domain Changes

*You can change the name and the membership of this

More irformation

Computer name:

Appendix D

]

computer. Changes might affect access to network resources.

IKERRIGANI

Ful computer name:
KERRIGAN

Member of
" Domain:

% Workaroup:

IWORKGROUP

oK I Cancel

Click on OK, and then Apply. You will be prompted to restart the VM; choose

Restart Later.

15. Activate windows. Leave the Serial Number textbox blank, and click Activate.

#. Windows Activation

O{& -k. Activation

Activation was successful

Your Windows Server 2008 R2 license is valid for 180 day(s).

16. Restart the VM.

17. We are almost ready. We just need to install the updates. Go to Start |

Windows Update.

fé Internet Explorer
] windows Update
| Accessories
| Administrative Tools
, Maintenance

, Startup

fé Internet Explorer (64-hit)

563

Creating a SQL Server VM

18. Click on Let me choose my settings, the link below Turn on automatic updates.
By doing this, we will disable automatic, ongoing updates for this VM.

15

O | = Control Panel = System and Security = Windows Update - @J I Search Control Panel

Control Panel Home Wind update

Check for updates

Change settings l-:{' Turn on automatic updating

iew update history g Updates are not being installed automatically

Restore hidden updates Turn on automatic updating to help improve the security and performance of

Updates: frequently asked your computer and allow standard users to install updates on this computer,
guestions

Turn on automatic updates I

Let me choose my settings

Most recent check for updates: Mever
Updates were installed: Mewver
‘You receive updates: Faor Windows only.

19. Under Important Updates, choose Never check for updates and click on OK.

@ Change settings :

u | = System and Security * Windows Update » Change settings - m I Search Control Panel

Choose how Windows can install updates

When your computer is onling, Windows can automatically check for important updates and install them using these
settings. When new updates are available, you can also install them before shutting down the computer,

How does automatic updating help me?

Important updates

|\@ INever check for updates (not recommended) j

Install new updates: IE'-.-'er‘r' day j at |3:EIEI AM j

Recommended updates

v Give me recommended updates the same way I receive important updates

Who can install updates
¥ Allow all users to install updates on this computer

Mote: Windows Update might update itself automatically first when checking for other updates, Read our privacy
statement online.

20. Click on check for updates and install all the critical and relevant updates.
When asked to install Internet Explorer 9,

install it.

Appendix D

21. When prompted to restart, click on OK. Once the VM has restarted, log in using

VM | Send Ctrl + Alt + Delete.

I

Settings...

Remowvable Devices
Enter Unity

Power

Send Ctrl+ Alt+Del

Ctrl+D

Reinstall Vbdware Tools...

22. Now let's disable the firewall. We are only doing this for our development VM. Go to

Administrative Tools | Server Manager.

23. Under the section Customize This Server go to Configure Windows Firewall and

disable the firewall.

i_;j] Customize This Server

i%g, Add roles

.
“l,' Enable Remote Desktop

w Configure Windows Firewall

Roles:

Features:

Remote Desktop:

Firewall:

Mone

Mone

Dizabled

Public: On

24. On the left-hand side pane, select Turn Windows Firewall on or off.

565

Creating a SQL Server VM

25. In the Customize Settings dialog, choose to turn off Windows firewall for both private
and public networks.

|ﬂ + System and Securitﬂ v|'|.ﬂ.|'induws Firewall = Customize Settings - m I Seard

Customize settings for each type of network
You can modify the firewall settings for each type of network location that you use,
What are network locations?

Home or work (private) network location settings
.@] " Turn on Windows Firewall

™ Elock all incoming connections, including those in the list of allowed programs

[T Makify me when Windows Firewall blocks a new pragram

I@ &% Turn off Windows Firewall {(not recommended)

Public network location settings
f.a] ™ Turn on Windows Firewal

[T Elock all incoming connections, including those in the lisk of allowed programs

[T Mokify me when Windows Firewall blocks a new program

I@ % Turn off Windows Firewall {not recommended)

26. Now let's disable IE Enhanced Security Configuration. Go to Start | Administrative
Tools | Server Manager.

27. Under the Security Information section, click on Configure IE ESC located on the
top-right box, as shown in the following screenshot:

(~) Security Information i Go to Windows Firewall
&
Windows Firewall: Domain: On S Configlu={ndates
#4 Check for New Roles
Windows Updates: Mever check for updates _E‘lsn Run Security Configuration Wizard
Last checked for updates: Today at 4:41 FM % Configure IE ESC
Last installed updates: Today at 8:53 AM
IE Enhanced Security Configuration On for Administrators
(ESC): On for Users

566

Appendix D

28. Select Off for both Administrators and Users. Click on OK.

, Internet Explorer

Internet Explorer Enhanced Security Configuration (IE ESC) reduces the
exposure of your server to potential attacks from Web-based content.

Internet Explorer Enhanced Security Configuration is enabled by
default for Administrators and Users groups.

Administrators:

a' " On {(Recommended)
B & of

Lsers:
& ¢ on(Recommended)

bl & off

Installing VMWare tools

For an enhanced VM experience, we want to install VMWare tools.

1. Launch VMWare Player.
2. Inthe VM menu, select Install VMWare Tools.

MM Helps
Settings... Ctrl+D

Removable Devices »
Enter Unity

Power k
Send Ctrl+Alt+Del

Install Wiiware Tools...

567

Creating a SQL Server VM

3. When the AutoPlay dialog comes up, click on Run setup.exe as shown in the
following screenshot:

[putopiay N TeTEY
CD Drive (D:) VMware Tools

[T Always do this for software and games:

Install or run program from your media

tun setup
‘ublished ware, Inc,

General options

COpen folder to view files
l using Windows Explorer

View more AutoPlay options in Control Panel

4. Select the Typical setup type, and click on Next.

i'._%- VMware Tools

Please select a setup type.

Installs the program features used by this VMware product only, Select
this option if you intend to run this virtual machine only with this VMware
product.

" Complete

Installs all program features. Select this option if you intend to run
this virtual machine on multiple VMware products.

Lets you choose which program features to install and where to
install them. Only advanced users should select this option.

< Back Mext = Cancel

568

Appendix D

5. Follow the wizard to completion.

6. Once the installation is done, you will be prompted to restart. Click on Yes.

"5 VMware Tools K »
153

changes made to VMware Tools to take effect. Click

& You must restart your system for the configuration
¥es to restart now or Mo if you plan to restart later.

o |

Configuring a domain controller

In a production environment, it is not recommended to install the domain controller with any
of your other server software.

Note that this section is optional. You do not need to configure a
s domain controller to start using the recipes in this book.

For development and testing purposes (such as ours), however, we will install them on the same
machine. Should you want to mimic a production setup, you can create another Windows Server
2008 R2 VM with a different computer name, and follow the steps given:

1. Launch VMWare Player.

2. Play SQL2012 VM.

3. Loginto our VM, KERRIGAN.
4

Go to Administrative Tools | Server Manager.

_' b Add roles Roles: None
E| |
e Add features Features: MNone
f
‘l! Enable Remote Desktop Remote Desktop: Dizabled
i:i Corfigure Windows Firewall Firewalk: Public: On

569

Creating a SQL Server VM

Click on Add roles. This will launch the Add Roles Wizard dialog.
In the Select Server Roles screen, choose Active Directory Domain Services.

This action will trigger the display of another window prompting if you want to

install required features. Click on Add Required Features.

Add Roles Wizard

Before You Begin

Confirmation

Progress

Results

Add Roles Wizard |

Select Server Roles

Select one or more roles to install on this server.

Roles: Description:

x 2 2 S Active Directory Certificate Services
0 Adj_ve D!rechory Cerhﬁahe S_EMCi/ AD CS) is used to create certification
O Ach.ve D!rectory Domcn TSerwces. authorities and related role services
D Active Directory Federation Services that allow you to issue and manage
["1 Active Directorv Liohtweioht Directorv Services certificates usedin a variety of

i . Add features required for Active Directory Domain Services?

f—
W =
— | *ou cannat install Active Directory Domain Services unless the required features are also installed.
Features: Description:
= .NET Framework 3.5.1 Features Microsoft .NET Framework 3.5.1 combines
'NET Framework 3.5.1 the power of the .NET Framework 2.0 APls

with new technologies for building

pplications that offer appesaling user
interfaces, protect your customers’ personal
identity information, enable seamless and
secure communication, and provide the
ability to model a range of business
processes.

Add Required Features Cancel

® Why are these features required?

7. Click on Next in the Introduction to Active Directory Domain Services window.

Add Roles Wizard

Active Directory Domain Services

Before You Begin
Server Roles

Active Dire

Confirmation

Progress

Results

Introduction to Active Directory Domain Services

Active Directory Domain Services (AD DS) stores information about users, computers, and other devices on the

network. AD DS helps administrators securely manage this information and fadlitates resource sharing and

omain Services collaboration between users. AD DS is also required for directory-enabled applications such as Microsoft
Exchange Server and for other Windows Server technologies such as Group Policy.

Things to Note

i ' To help ensure that users can still log on to the network in the case of a server outage, install a minimum of
two domain controllers for a domain.

i ' AD DS requires a DNS server to be installed on the network. If you do not have a DNS server installed, you
will be prompted to install the DNS Server role on this server,

i After you install the AD DS role, use the Active Directory Domain Services Installation Wizard
(dcpromo.exe) to make the server a fully functional domain controller,

i Installing AD DS will also install the DFS Namespaces, DFS Replication, and File Replication services which
are required by Directory Service.
Additional Information
Overview of AD DS
Installing AD DS
Common Configurations for AD DS

570

Appendix D

8. Click on Next in the Confirm Installation Selections window.

Add Roles Wizard 1

Confirm Installation Selections

Before You Begin
Toinstall the following roles, role services, or features, didk Install.
Server Roles

. ; .) @ 2informational messages below
Active Directory Domain Services

(D Thiz server might need to be restarted after the installation completes.
Progress ~) Active Directory Domain Services

Results @ After you install the AD DS role, use the Active Directory Domain Services Installation Wizard
(dcpromo. exe) to make the server a fully functional domain controller.

(~) NET Framework 3.5.1 Features
NET Framework 3.5.1

9. When done, view the results. Note that you will get a warning because we disabled
automatic updates. For our purposes, this is acceptable.

Add Roles Wizard .

Installation Results

Before You Begin
The following roles, role services, or features were installed successfully:
Server Roles

! 1warning, 1informational messages below
Active Directory Domain Services = i

Confirmation v, Windows automatic updating is not enabled. To ensure that your newly-nstalled role or feature is

~ automatically updated, turn on Windows Update in Control Panel.
Progress

~) Active Directory Domain Services @ 1nstallation succeeded

The following role services were installed:

Active Directory Domain Controller
Use the Active Directory Domain Services Installation Wizard (dcpromo.exe) to make the server a
fully functional domain controller.

Cloze thiz wizard and launch the Active Directory Domain Services Installation Wizard (dcpromo.exe).

(4] .NET Framework 3.5.1 Features 'ﬁ' Installation succeeded

The following features were installed:
NET Framework 3.5.1

571

Creating a SQL Server VM

10. To configure the domain, go to Start and in the textbox type dcpromo and press Enter.
This will start the Active Directory Domain Services Installation Wizard application.

I depromal .

11. Click on Next on the wizard until you hit the Deployment Configuration window.
Select Create a new domain in a new forest.

@ Active Directory Domain Services Installation Wizard

Choose a Deployment Configuration

You can create a domain controller for an existing forest or for a new forest.

" Existing forest

" Addla domain controller ta am existing domain

" LCreate a new domain it am existing forest
Thiz senver will become the first damain contraller in the new danmair;

{* Create a new domain in a new forest

More about possible deployment configurations

12. In the Name the Forest Root Domain window, type queryworks.local in the
FQDN of the forest root domain textbox.

@! Active Directory Domain Services Installation Wizard

MName the Forest Root Domain
The first domain in the forest is the forest root domain. ks name is also the name of
the forest.

Type the fully qualified domain name (FADM) of the new forest root domain.

FQDN of the forest root domain:
Iquerywu:urks.lncal

Example: corp .contoso com

572

Appendix D

13. For Forest functional level, select Windows Server 2008 R2 and click on Next.

@! Active Directory Domain Services Installation Wizard

Set Forest Functional Level
Select the forest functional level.

Forest functional level:

Dietails:

e Windows Server 2008 R2 forest functional level provides all the features that ;l
re available in the Windows Server 2008 forest functional level, plus the following
dditional feature:

- Recycle Bin, which, when it is enabled, provides the ability to restore

deleted objects in their entirety while Active Directory Domain
Services is running.
new domains that are created in this forest will operate by default at the
indows Server 2008 RZ domain functional level. LI

1 “fou will be able to add only domain controllers that are running
Windows Server 2008 R2 or later to this forest.

Maore sbout domain and forest functional levels

14. In the Additional Domain Controller Options window, select DNS server as shown
in the following screenshot:

@ Active Directory Domain Services Installation Wizard

Additional Demain Controller Options

Select additional options for this domain controller.
¥ DNS server
¥ | Global catalog
™| Bead-only domain contiollen (RODE]

Additional information:

The first domain controller in a forest must be a global catalog server and ;l
cannaot be an RODC.

We recommend that you install the DNS Server service on the first domain
controller.

More about additional domain controller options

573

Creating a SQL Server VM

15. You will receive a warning about the computer having a dynamically assigned
IP address. Click on Yes, the computer will use an IP address automatically
assigned by a DHCP server. For our purposes, this is acceptable. Note that if this
option is chosen, it is assumed that a DHCP server is already available on the
network. Otherwise, the server will use an APIPA scheme, or Automatic Private IP
Addressing, which does not work well with domain controllers.

g Static IP assignment i} il

@ This computer has dynamically assigned IP address(es)

This computer has at least one physical network adapter that does not have static IP address(es)
assigned to its IP Properties. If both IPv4 and IPv6 are enabled for a network adapter, both IPv4 and
IPva static IP addresses should be assigned to both IPv4 and IPva Properties of the physical network
adapter. Such static IP address(es) assignment should be done to all the physical network adapters for
reliable Domain Name System (DNS) operation.

Do you want to continue without assigning static IP address{es)?

=» Yes, the computer will use an IP address automatically assigned by a DHCP server
(not recommended]).

<% Mo, I will assign static IP addresses to all physical network adapters.

.ﬁ. Maore about configuring TCP/IP and DMS Client settings.

16. Another warning dialog will appear, informing you that delegation for the DNS server
cannot be created. Click on Yes to continue.

@/ Active Directory Domain Services Installation ¥]

A delegation for this DNS server cannot be created because the
I . authoritative parent zone cannot be found or it does not run
~ Windows DMS server. If you are integrating with an existing DNS
infrastructure, you should manually create a delegation to this
DMS server in the parent zone to ensure reliable name resolution
from outside the domain "querywaorks.local”, Otherwise, no action
is required.

Do you want to continue?

Yes | Mo I

574

Appendix D

17. Accept the default folders for Location for database, log files, and SYSVOL.

0 - - - - -
@/ Active Directory Domain Services Installation Wizard X

Location for Database. Log Fles, and SYSVOL
Specify the folders that will contain the Active Directory domain controller
database, log files, and 5YSVOL.

|_"i'i'i

For better perfformance and recoverability, store the database and log files on separate

volumes.
Database folder:

Nindows\NTDS Browse... |
Log files folder:
IC:\Windows"~.NTDS Browse... |
SYSVOL folder:
IC:\Windnws"-ﬁYS‘u"OL Browss... |

More about placing Active Directory Domain Services files

18. Type the password.

@ Active Directory Domain Services Installation Wizard

Directory Services Restore Mode Administrator Password

The Directory Services Restore Mode Administrator account is different from the domain
Administrator account.

Assign a password for the Administrator account that will be used when this domain
controller is started in Directory Services Restore Mode. We recommend that you
choose a strong password.

Paszword: I...oooo.

Corfim password: Iununl

More about Directory Services Restore Mode password

575

Creating a SQL Server VM

19. Review the Summary of your selections.

B Active Directory Domain Services Installation Wizard

Review your selections:
this server as the first Active Directory domain controller in a new forest.

new domain name is "quenyworks local”. This is also the name of the new
orest.

NetBIOS name of the domain is "QUERYWORKS".

Forest Functional Level: Windows Server 2008 R2

ain Functional Level: Windows Server 2008 R2

e: Default-First-Site-Name

=

To change an option, click Back. To begin the operation, click Next.

These settings can be exported to an answer file for use with Export settings. |
other unattended operations.

< Back Next > Cancel |

20. Finish the installation process of the wizard. When done, you will be prompted to
restart as shown in the following screenshot:

é_'l Active Directory Domain Services Installation Wizal

You must restart your computer before the changes made by the
Active Directory Domain Services Installation wizard take effect.

RestatNow | Donot Restart Now |

21. Once the Virtual Machine is back online, you will notice that the login screen no longer
shows KERRIGAN\Administrator. It should now show QUERYWORKS\Administrator.

576

Appendix D

Creating domain accounts

Next, we will create some domain accounts to be used for our exercises. We will create
the following;:

» QUERYWORKS\sqlservice
» QUERYWORKS\sqglagent
» QUERYWORKS\aterra

» QUERYWORKS\jraynor

» QUERYWORKS\mhorner

To add these accounts, follow the steps listed below:

1. Launch SQL2012VM and log in.
2. Go to Start | Administrative Tools | Active Directory Users and Computers.

configure this server Remote Desktop Services »
#u Active Directory Administrative Center

Active Directory Domains and Trusts

Active Directory Module for Windows PowerShell
Active Directory Sites and Services

Active Directory Users and Computers *—'
ADSI Edit

Component Services

2B

Product

Time Zo

Computer Management
Data Sources (ODEC)
DMNS

Event Viewer

Local Ar

main Full Com

Group Policy Management
iSCSI Initiator
Local Security Policy

) [£F e B fee BV] B R L

=
[+

Administrator Performance Monitar

Security Configuration Wizard

Documents Server Manager

B

Services
Computer

e
=

" Share and Storage Management

Storage Explorer

Ml ¢

Netwark
System Configuration

Task Scheduler

Windows Firewall with Advanced Security

=) [

Control Panel

Devices and Printers Windows Memory Diagnostic

! B C

Windows PowerShell Modules

Windows Server Backup

Administrative Tools

577

Creating a SQL Server VM

3. Inthe Active Directory Users and Computers window, expand queryworks.local.
Right-click on Users and select New | User, as shown in the following screenshot:

Flle Action WView Help
e |5 40[RE o= HA| S
: Active Directory Users and Comput | Name
[saved Queries 2, Administrator
B #& queryworks.local 82, Allowed RODC Password R
| Builtin 82, Cert Publishers
| Computers 82, Denied RODC Password Ry
| Dom_ain Conh'.oller_s . 2 DnsAdmins
| ForagnSecurltly'PrlnupaIs Sg‘DnSUpdateProxy
_| Managed Service Accounts %Domain Admins
Delegate Contral... omain Computers
e omain Controllers
nmain Gecte
Computer
All Tasks » Contact
? Group
InetOrgPerson
Refresh msImaging-PSPs
Export List... MSMQ Queue Alias
—— Printer
Properties iy -
Help Shared Folder

4. In Full name and User logon name, type sqlservice and click on Next as shown
in the following screenshot:

New Object - User =l

& Create in: gueryworks local/Users

First name: I Initials: I

Last name: I

Full name: Isqlser\rice

User logon name:

Isqlser\rice| I @queryworks local j

User logon name (pre-Windows 2000):
IQUEHWU’DF{KS\ Isqlser\tice

< Back Next > Cancel

578

Appendix D

5. Type the password, then check User cannot change password and Password never
expires, as shown in the following screenshot:

New Object - User |

&’ Createin: guensworks local/Users

Password: I--------

Confim password; quu"

[User must change paseword at next logon

W User cannot change password

v Password never expiresi

[T Accourt is disabled

< Back Mesd > Cancel

6. Click on Next and then Finish.

7. Repeat steps 3 to 6 for creating the rest of the users:

o sglagent
o aterra
QO Jjraynor

0 mhorner

579

Creating a SQL Server VM

Installing SQL Server 2012 on a VM

We are now ready to install SQL Server 2012. Carry out the following steps:

1. Launch VMWare Player.
2. Play SQL2012VM and login.
3. GotoVM | Removable Devices | CD/DVD | Settings.

Settings...

Removable Devices » | ¥ CD/DVD (IDE) 4 | Disconnect
v

Enter Unity Floppy] Settings...

4. Change the ISO image file path to the SQL Server 2012 ISO file, and click on OK.

r Ny
Virtual Machine Settings ‘ ‘ ﬂ
Hardware | Options

I i Device status
Device Summary
B Memory 2048 ME Connected
B Processors 1 Connect at power on

{=iHard Disk (5CSI) 80 GB _
Cannection

[Floppy Auto detect () Use physical drive:
FElNetwork Adapter NAT =

FSINetwork Adapt... Host-only s : .
@USB Controller Present @ Use I50 image file:

le:' Sound Card Auto detect C:\Users\Downloads\en_micro

EDisplay Auto detect
Add...][Remove
[0K J [Cancel] [Help
s — = A

580

Appendix D

5. Once you click on OK, the Autoplay window should appear. Click on Run SETUP.EXE
as shown in the following screenshot:

[

E €D Drive (D) SQLFULL_ENU

[~ Always do this for software and games:
Install or run program from your media

(E

y I'~"Iin:r osoft Co

General options

Open folder to view files
using Windows Explorer

Wiew more AutoPlay options in Control Panel

6. Select Installation from the left-hand pane, and choose New SQL Server
stand-alone installation or add features to an existing installation, as
shown in the following screenshot:

= 5QL Server Installation Center = Inlﬂ

Flanning Sz Mew SQL Server stand-alone installation or add features to an
. i existing installation
i Launch a wizard to install SQL Server 2012 in a non-clustered
Maintenance environment or to add features to an existing SQL Server 2012
instance.
Tools
Sl New SQL Server failover duster installation
Resources
Launch a wizard to install a single-node SQL Server 2012 failover
Advanced duster.
Options

x‘l'IP Add node to a SQL Server failover duster

Launch a wizard to add a node to an existing SQL Server 2012
failover duster.

L
=

Upgrade from 5QL Server 2005, 5QL Server 2008 or SQL Server
2008 R2

Launch a wizard to upgrade SQL Server 2005, SQL Server 2008 or
SQL Server 2008 R2 to SQL Server 2012,

M|

581

Creating a SQL Server VM
7. Run Setup Support Rules and click on Next.

SQL Server 2012 Setup - - 1o x|

Setup Support Rules
Setup Support Rules identify problems that might occur when youinstall SQL Server Setup supportfiles. Failures must be corrected
before Setup can continue.

Operation completed. Passed: 8. Failed 0. Warning 0. Skipped 0.

Setup Support Rules
Show details >>| Re-run |

View detailed report

8. For the trial edition, we want to keep the default Evaluation product key selected.

1% SQL Server 2012 Setup B o

Product Key

Specify the edition of SQL Server 2012 to install.

Product Key ‘alidate this instance of SQL Server 2012 by entering the 25-character key from the Microsoft certificate of

- authenticity or product packaging. You can also specify a free edition of SQL Server, such as Evaluation ar
SEETERTETE Express. Evaluation has thelargest set of QL Server features, as documented in SQL Server Books Onling, and
Product Updates is activated with a 180-day expiration. To upgrade from one edition to another, run the Edition Upgrade Wizard.

Install Setup Files
{* Specify a free edition:

IEvaIuaﬁon j

(" Enter the product key:

9. Inthe License Terms window, select | accept the license terms, and click on Next
as shown in the following screenshot:

582

Appendix D

SQL Server 2012 Setup) o =]

License Terms

To install SQL Server 2012, you must accept the Microsoft Software License Terms.

Product Key o
: s MICROSOFT EVALUATION SOFTWARE LICENSE TERMS
Product Updates MICROSOFT SQL SERVER 2012 EVALUATION E

Install Setup Files
These license terms are an agreement between Microsoft Corporation (or based on where you
live, one of its affiliates) and you. Please read them. They apply to the evaluation software named
above, which includes the media on which you received it, if any. The terms also apply to any
Microsoft

+ updates,
» supplements,
+ Internet-based services, and

'+ support services

L. DU . =
L 2

Copy Print

¥ 1accept the license terms.

ul send feature usage data to Microsoft. Feature usage dataincludes information about your hardware
configuration and how you use SQL Server and its components.

See the Microsoft SOL Server 2012 Privacy Statement for more information.

< Back | Mext > | Cancel |

10. Possible issues will be flagged in the next window. For our purposes, we expect
to see a warning because of the domain controller and the firewall, as shown in
the following screenshot:

W% SQL Server 2012 Setup IR -0 x|

Setup Support Rules

Setup Support Rules identify problems that might occur when you install SQL Server Setup supportfiles. Failures must be corrected
befare Setup can continue.

Setup Support Rules Operation completed. Passed: 6. Failed 0. Warning 2. Skipped 0.

SemDRo'e |

Feature Selection

Installation Rules Hide details << | = |

Disk Space Requirements View detailed report

Error Reporting

Installation Configuration Rules Rule Status

Ready to Install @ Fusion Active Template Library (ATL) Passed

Installation Progress @ Previous releases of SQL Server 2008 Business Inteligence Develop... |Passed

Complete @ Mo 5x5 install with SQL Server "Denali” CTPO Passed
@ Consistency validation for SQL Server registry keys Passed
_:5 Computer domain controller Warning
@ Microsoft \NET Application Security Passed
@ Edition WOW64 platform Passed
_:3 Windows Firewall Warning

583

Creating a SQL Server VM

For security reasons, it is recommended to not install SQL Server on top of the
domain controller, as discussed in the article at http://msdn.microsoft.com/
en-us/library/ms143506.aspx. For our purposes, this is just a test machine
that will not be used as a production box, we can ignore this warning.

Rule Check Result ' x|

Fule "Computer domain controller” generated a warning.

Instaling SQL Server 2012 on a domain contraller is not
recommended.

11. In the Setup Role screen, select SQL Server Feature Installation as shown in the
following screenshot:

% SOL Server 2012 Setup -l N [=1ES
Setup Role

Click the SQL Server Feature Installation option to individually select which feature components to install, or dick afeature roleto
install a specific configuration.

Setup Support Rules {* SQL Server Feature Installation

Setup Role Install SQL Server Database Engine Services, Analysis Services, Reporting Services, Integration Services, and

Feature Selection other features.

Installation Rules (" SQL Server PowerPivot for SharePoint

Disk Space Requirements Install PowerPivot for SharePoint on a new or existing SharePoint 2010 serverto support PowerPivot data access

& in the farm. Optionally, add the SQL Server relational database engine to use as the new farm's database server.
Error Reporting

Installation Configuration Rules ¥ Addis0l ServerDatabase Relational Engine Services to this installation,

Ready to Install = All Features With Defaults
Installation Progress Install all features using default values for the service accounts.
Complete

12. In the feature selection, be sure to choose:
o Database Engine Services (all components)
o Analysis Services
o Reporting Services - Native
o SQL Server Data Tools

584

http://msdn.microsoft.com/en-us/library/ms143506.aspx
http://msdn.microsoft.com/en-us/library/ms143506.aspx

Appendix D

o Integration Services

o Documentation Components
o Management Tools - Basic

o Management Tools - Complete

Feel free to choose additional features you want to try and then click on Next.

SQL Server 2012 Setup Ny i =]
Feature Selection
Select the Evaluation features to install.
Setup Support Rules Features: Feature description:
Setup Role Instance Features | | Installs the SQL server development ;I
Feature Selection Database Engine Services environment, induding the tool formerly

named Business Intelligence Development

EQI:._?er:er :thcah;n i icliceis o Search Studio. Also installs the business
e A B s L L L A inteligence tools and references to the

Data Quality Services weh installers for database development
nalysis Services toals,

Installation Rules

Instance Configuration

Disk Space Requirements

Server Configuration Reporting Services - Mative
Database Engine Configuration ShaEd Features
. . Reporting Services - SharePoint
Anal 5 Ci i
S [reporting Services Add-in for SharePoint Products LI
Reporting Services Configuration [Data Quality Client

Prereguizites forselected features:

Error Reporting

lient Tools Connectivity Already installed:

ntegration Services Windows PowerShell 2.0

lient Tools Backwards Compatibility i Microsoft .MET Framework 3.5

lient Tools SDK To be installed from media:

ocumentation Components Microsoft .MET Framework 4.0 {may requir
anagement Tools - Basic Microsoft Visual Studio 2010 Shell

Installation Configuration Rules
Ready to Install

Installation Progress

Complete

Management Tools - Complete L. Microsoft Visual Studio Tools for Applicatio
[pistributed Replay Contraller b
[] Distributed Replay Client
[]5QL Client Connectivity SDK =4l | 2
Select All | Unselect All |
Shared feature directory: IC: \Program Files\Microsoft SQL Server), |
Shared feature directory (x86): IC: \Program Files (x86)\Microsoft SQL Server), |
< Back Next > Cancel | Help |

585

Creating a SQL Server VM

13. The install wizard will now check Installation Rules. If there are any errors reported,
be sure to resolve them before continuing with the installation. Click on Next.

Installation Rules

W SOL Server 2012 Setup B _10] x|

Setup is running rules to determine if the installation process will be blacked. For moreinformation, click Help.

Setup Support Rules

Setup Role

Feature Selection
Installation Rules

Instance Configuration

Disk Space Requirements
Server Configuration
Database Engine Configuration
Analysis Services Configuration
Reporting Services Configuration
Error Reporting

Installation Configuration Rules
Ready to Instal

Installation Progress

Complete

Operation completed. Passed: 2. Failed 0. Warning 0. Skipped 0.

Show details >>| Re-run |

View detailed report

14. In the Instance Configuration window, choose to install Default instance.

45 SOL Server 2012 Setup] =153

Instance Configuration

Specify the name and instance ID for the instance of SQL Server. Instance ID becomes part of the installation path.

Setup Support Rules

Setup Role

Feature Selection

Installation Rules

Instance Configuration
Disk Space Requirements
Server Configuration

Database Engine Configuration
Analysis Services Configuration
Reporting Services Configuration
Error Reporting

Installation Configuration Rules
Ready to Instal

Installation Progress

Complete

@ Default instance

{~ Named instance: IMSSQLSER'-.-‘ER

Instance ID: IMSSQLSERVER

Instance root directory: IC: \Program Files\Microsoft SQL Server), |
SQL Server directory: C:\Program Files\Microsoft SQL Server\MS5QL11.MSSQLSERVER

Analysis Services directory: C:\Program Files\Microsoft SQL Server\MSAS11.MSSQLSERVER
Reporting Services directary: C:\Program Files\Microsoft SQL Server\MSRS511.MSSQLSERVER

Installed instances:

Instance Mame | Instance ID | Features | Edition | Version

586

Appendix D

15. The next screen shows the disk space summary for all the features we've chosen so
far; click on Next.

& SQL Server 2012 Setup i

Disk Space Requirements

Review the disk space summary forthe SL Server features you selected.

Setup Support Rules
Setup Role

Feature Selection
Installation Rules
Instance Configuration

- a

Disk Usage Summary:

E--@ Drive C: 6898 MB required, 29386 MB available
; System Drive (C:\): 3413 MB required

Shared Install Directory (C:\Program Files\Microsoft SQL Server): 1191 MB required
Instance Directory (C:\Program Files\Microsoft SQL Server'): 2294 MB reguired

16. In the Server Configuration screen, change the account settings for all services
except Full-text Filter Daemon Launcher and SQL Server browser; for other services:

o Use QUERYWORKS\sglagent and corresponding password for SQL
Server Agent.

o Use QUERYWORKS\sqglservice and corresponding password for
remaining services.

T T
Server Configuration
Specify the service accounts and collation configuration.
Setup Support Rules Service Accounts | Collation |
Setup Role
Feahure Seecton Microsoft recommends thatyou use a separate account for each SQL Server service.
Installation Rules Service Account Mame Password | Startup Type
Instance Configuration SQL Server Agent QUERYWORKS \sglagent srssnnne j
Disk Space Requirements S0L Server Database Engine QUERYWORKS \sglservice ssssssss Automatic j
Server Configuration SQL Server Analysis Services QUERYWORKS \sqlservice sssssnne Automatic j
Database Engine Configuration SQL Server Reporting Services QUERYWORKS \sglservice - Automatic v
FTEEE SR AT TR SQL Server Integration Services 11.0 QUERYWORKS \sglservice sessaen Automatic ﬂ
Reporting Services Configuration
SQL Full-text Filter Daemon Launcher NT Service\MSSQLFDLauncher Manual
Error Reporting
Installation Configuration Rules SQL Server Browser NT AUTHORITYYL.OCAL SERVICE Automatic j
Ready to Install
Installation Progress
Complete

587

Creating a SQL Server VM

17. For the database engine configuration, choose Windows authentication mode. Be
sure to click on the Add Current User button to add QUERYWORKS\Administrator
as sysadmin to your default instance.

SQL Server 2012 Setup] . - 181 x|
Database Engine Configuration

Specify Database Engine authentication security mode, administrators and data directories.

Setup Support Rules Server Configuration | Data Directories | FILESTREAM
Setup Role

Featura Sclectian Specify the authentication mode and administrators for the Database Engine.

Installation Rules Authentication Mode
Instance Configuration ¥ Windows authentication mode
e el ™ Mixed Mode (SQL Server authentication and Windows authentication)
Server Configuration
Engine Ci
Analysis Services Configuration Enter password: I

N Specify the password forthe SQL Server system administrator(sa) account:

Reporting Services Configuration
Paring g Canﬂrmpassword:l

Error Reporting

Installation Configuration Rules Specify SQL Server administrator:
Ready to Install K5 \Administrator (Administrator) 5QL Server administrators have
Installation Progress unrestricted access to the Database
Engine.
Complete
Add Current Userl Add... | Remove |
< Back Next > Cancel Help

588

Appendix D

18. In Analysis Services Configuration, select Multidimensional and Data Mining
mode. Click on Add Current User again for users that will have administrative
privileges over Analysis Services.

Specify Analysis Services server modes, administrators, and data directories.

(o someratizsee I=IE

Analysis Services Configuration

Setup Support Rules

Setup Role

Feature Selection

Instzllation Rules

Instance Configuration

Disk Space Reguirements

Server Configuration

Database Engine Configuration
Analysis Services Configurati...
Reporting Services Configuration
Error Reporting

Installation Configuration Rules
Ready to Install

Installation Progress

Complete

Server Configuration | Data Directaries

[~ Server Mode:

* Multidimensional and Data Mining Mode
¢~ Tabular Mode

Add CurrantUserI Add... | Remnvel

Specify which users have administrative permissions for Analysis Services.

Analysis Services administrators have
unrestricted access to Analysis Services.

< Back

Neat > Cancel Help

589

Creating a SQL Server VM

19. For Reporting Services Configuration, select Install only. We will configure reporting
services later.

T SOL Server 2012 Setup N

Reporting Services Configuration

8 [=]

Specify the Reporting Services configuration mode.

Setup Support Rules

Setup Role

Feature Selection

Installation Rules

Instance Configuration

Disk Space Requirements
Server Configuration

Database Engine Configuration
Analysis Services Configuration
Reporting Services Configura...
Error Reporting

Installation Configuration Rules
Ready to Install

Installation Progress

Complete

Reporting Services Native Mode

= Install and configure.
Installs and configures the reportserverin native mode. The report server is operational after setup completes.

+ Install only.
Installs thz report server files. Afterinstallation, use Reporting Services Configuration Managerto configure the repart server for
native mode.

Reporting Services SharePoint Integrated Mode

= Installionly.
Installs the report server files. Afterinstallation use SharePoint Central Administration to complete the configuration. Verify the
SQL Server Reporting Services service is started and create at least one SQL Server Reporting Services service application. For
maore information, dick Help.

< Back | Next > | Cancel | Help |

20. On the Error Reporting window, leave the checkbox unchecked. Click on Next.

& SQL Server 2012 Setup

Error Reporting

=10l x]

Help Microsoft improve SQL Server features and services.

Setup Support Rules

Setup Role

Feature Selection

Installation Rules

Instance Configuration

Disk Space Requirements
Server Configuration

Database Engine Configuration
Analysis Services Configuration
Reporting Services Configuration
Error Reporting

Installation Configuration Rules
Ready to Install

Installation Progress

Complete

Specify the information that youwould like to automatically send to Microsoftto improve future releases of SQL Server. These settings are
optional. Microsofttreats thisinformation as confidential.Microsoft may provide updates throughMicrosoft Updateto modifyfeatureusage
data. These updates might be downloaded and installed on your machine automatically, depending on your Automatic Update settings.

See the Microsoft SQL Server 2012 Privacy Statement for more information.

Read more about Microsoft Update and Automatic Update.

u Send Windows and SQL Server Error Reports to Microsoft or your corporate report server. This setting only applies to services that run
without user interaction.

590

Appendix D

21. Review your settings in the Ready to Install screen, and click on Install.

% SQL Server 2012 Setup 1A =18
Ready to Install
Verify the SQL Server 2012 features to be installed.
Setup Support Rules Ready to install SQL Server 2012z
Setup Role =~ Summary 5
Feature Selection -~ Edition: Evaluation
Trietalation Rides Action: Install (Product Update)
Z [J- Prerequisites
Instance Ci i 2
i Conigeaton £} Aready installed:
Disk Space Requirements i e Windows PowerShell 2.0
Server Configuration P Microsoft .NET Framework 3.5
Database Engine Configuration [El-To be installed from media:
Microsoft .NET Framework 4.0 (may require reboot)
Analysis S Ci i
e S Conngirhion Microsoft Visual Studio 2010 Shel
Reporting Services Configuration - Microsoft Visual Studio Tools for Applications 3.0
Error Reporting B ngeral Configuration
Installation Configuration Rules = Feamresh
Database Engine Services
ratyin et SQL Server Replication
Installation Frogress - Full-Text and Semantic Extractions for Search
Complete - Data Quality Services
- Analysis Services
Reporting Services - Native
SQL Server Data Tools
- Integration Services
- Client Tools Backwards Compatibility
- Client Tools SDK
Documentation Components LI
Configuration file path:
|c:1Program Files\Microsoft SQL Server|110\etup Bootstrap!L.og\20120630_131730\ConfigurationFie.ini
< Back Install Cancel Help
]

22. Once installation is finished, click on Close.

23. Now, we need to configure Reporting Services in the native mode. Go to Start |
All Programs | SQL Server 2012 | Configuration Tools | Reporting Services
Configuration Manager.

| Microsoft SQL Server 2008
. Microsoft SQL Server 2012
a Download Microsoft SQL Server Compac
L Import and Export Data (32-hit)
L Import and Export Data (64-bit)
@0 SOL Server Data Tools
=& SQL Server Management Studio

, Configuration Tools /
Reporting Services Configiration Mz

[ﬁ SQL Server Configuration Manager

SQL Server Error and Usage Reporti
T SQL Server Installation Center (54

, Data Quality Services =

. Documentation & Community

. Integration Services -

1 Back

I |Search programs and files

Ala =

591

Creating a SQL Server VM

24. Connect to the default instance.

[Reporting Services Configuration Connection 8
"E Micrasalt
Z SQLServerzo12

Repaorting Services

Please specify a server name, click the Find button, and zelect a report server
instance to configure.

Server Name: IKERRIGAN Find |

Repaort Server Instance: IMSSQLSER\I‘ER

#

(7] Connect I

Cancel

25. Click on Service Account. Double-check the service account assigned to run
Reporting Services. If it is properly set, we do not need to make any changes

in this window.

#§ Web Service URL Report Server Service Account

Choose an option to setthe service account and then click Apply.

24 Connect -
2 Service Account
— KERRIGANYMSSQLSERVER
ﬁ Specify a built-in account or Windows domain user account to runthe report server service.
=3, Service Account @

|| Database " Use built-in account: Il‘-leh_-ork Service

¢ Use another account:
Q Report Manager URL

Account (Domainiuser): IQUERYWORKS‘\sqlservice

.~ E-mail Settings Password: I........
ﬁ Execution Account
(»'« Encryption Keys

¢”,5 Scale-out Deployment

592

Appendix D

26. Click on Web Service URL; we will accept the default values. Click on Apply.

¢ Connect

5 KERRIGANYMSSQLSERVER

=2, service Account

Web Service URL

| Database
0 Report Manager URL
~ E-mail Settings

H Execution Account

1%, 5cale-out Deployment

Web Service URL

Configure a URL used to access the Report Server. Click Advanced to define multiple URLs for a single Report Server
_‘@ instance, or to specify additional parameters onthe URL.

Report Server Web Service is not configured. Default values have been provided to you. To accept these defaults simply
s\ press the Apply button, else change them and then press Apply.

Report Server Web Service Virtual Directory
Virtual Directory:

|REportServer

Report Server Web Service Site identification

IP Address: IAII Assigned (Recommended) j
TCP Port: o

5L Certificate: |(Not Selected) =l
S5L Port: |

Report Server Web Service URLs

URLs: http://KERRIGAN:B0/ReportServer

Results

Copy

Apply | Exit |

27. Click on Database and then click on the Change Database button. This will launch
another set of windows.

A connect

5 KERRIGANYMSSQLSERVER
=2, service Account

¥ web Service URL

_ Datsbase

0 Report Manager URL
=] E-mail Settings

ﬁ Execution Account
'\;-'; Encryption Keys

;LV 1 Scale-out Deployment

Report Server Database

- Reporting Services stores all report server content and application datain a database. Usethis page to create or
_J changethe report server database or update database connection credentials.

Current Report Server Database

Click Change database to select a different database orcreate a new database in native or SharePointintegrated mode.

SQL Server Name:
Database Name:
Report Server Mode:

Change Database

Thefollowing credentials are used by the report server to connect to the reportserver database. Use the options belowto choose 2
different account orupdate a password.

Current Report Server Database Credential

Credential:
Login:
Password:

Change Credentials |

593

Creating a SQL Server VM

28. Select Create a new report server database.

Change Database

Report Server Database Configuration Wizard o

Choose whether to create or configure a report server database.

Action

Database Server
Database
Credentials
Summary

Progress and Finish

Select one of the following opticns to create an empty report server database or select
an existing report server database that has content you want to use.
Select a task from the following hist:

% Create a new report server database.

{” Choose an existing report server database.

29. Leave the default database name as ReportServer, and click on Next.

Change Database

Report Server Database Configuration Wizard B il

Choose whether to create or configure a report server database.

Action

Database Server
Database
Credentials
Summary

Progress and Finish

Enter a database name, select the language to use for running SAL scripts, and specify
whether to create the datsbase in native or SharePoint mode.

Database Name:

Temp Database Name: ReportServerTemp
Language: |Englsh {United States) =l
Report Server Mode: MNative

Appendix D

30. For Authentication Type, use Service Credentials. Click on Next.

Report Server Database Configuration Wizard . ﬂ

Change Database
Choose whether to create or configure a report server database.

Action
Specify the credentials of an existing account that the report server will use to connect to

Database Server the report server database. Permission to access the report server database will be
automatically granted to the account you specify.

Database

Credentizls
Summary Credentizls:
Progress and Finish

Authentication Type:

User name: IQUEF-!Y‘-'-;'ORKS"-@quervice

Password: I

31. Review your Summary and click on Next.

.
Change Database
Choose whether to create or configure a report server databaze.
Action . .) . .
The following information will be used to create a new report server database. Verify this
Datsbase Server information is correct before you continue.
Database
e SQOL Server Instance: KERRIGAN
Credentials
Repaort Server Database: ReportServer
Summary Temp Database: ReportServerTempDB
Progress and Finish Report Server Language: Englizh (United States)
Report Server Mode: Native
Authentication Type: Service Account
Username: QUERYWORKS \sqlservice
Password: S n e

595

Creating a SQL Server VM

32. When the configurations have been successfully applied, click on Finish.

Change Database

———S————————————
Report Server Database Configuration Wizard L

Choose whether to create or configure 3 report server database.

Action

Database Server

ol

Database

Credentials

Flease wait while the Report Server Database Configuration wizard configures the
database. This might take several minutes to complete.

Sumeery I
Progress and Finish

Werifying datsbase sku Success

Generating datzbase script Success

Running database script Success

Generating rights scripts Success

Applying connection rights Success

Setting DSN Success

Previous | Finish I Cancel

Note that the original Report Server Database screen will now be populated with
the newly configured values.

2 Connect

7 KERRIGAMNMSSQLSERVER
=4, service Account

% Web Service URL

__ Database

o Report Manager URL
= E-mail Settings

ﬁ Execution Account
‘{4 Encryption Keys

1%, 5cale-out Deployment

Report Server Database

Reporting Services stores all report server content and application data in a database. Use this page to create or
_J changethe report server database or update database connection credentials.

Current Report Server Database

Click Change database to select a different database or create a new database in native or SharePointintegrated mode.

SQL Server Name:

KERRIGAN
Database Name: ReportServer
Report Server Mode: Native

Change Database

Current Report Server Database Credentiat

Thefollowing credentials are used by the report server to connect to the report server database. Use the options belowto choose a
different account orupdate a password.

Credential: Service Account
Login: QUERYWORKS\sglservice
Password: seesseseess

Change Credentials

596

Appendix D
33. Click on Report Manager URL, and click on Apply.

Connect
2 Report Manager URL
— KERRIGAMNMSSQLSERVER
6 Configure a URL to access Report Manager. Click Advanced to define multiple URLs, orto specify additional parameters
=, Service Account on g IR
% Web Service URL [} The Report Manager virtual directory name is not configured. To configure the directory, enter a name or use the default value
£ thatis provided, and then click Apply.
|§ Database Report Manager Site Identification
f Virtual Directory: IRepons
/& Report Manager URL

URLs: http://KERRIGAN:80/Reports Advanced

-] E-mail Settings
ﬁ Execution Account
%, Encryption Keys

1, 5cale-out Deployment

4| 50|

Results

Copy

Apply | Exit

34. Test the URL by launching Internet Explorer. In the browser, type http://
localhost /Reports (this is the same URL as http://KERRIGAN: 80/Reports):

é Home - Report Manager - Windows Internet Explorer

@_\3.' L I@ http: {localhost/Reports/Pages ,Oj . @ +4 l)(@ Home - Report Manager x | |

SQL Server Reporting Services

& Home

4 New Folder) Mew Data Source Lo Report Builder 4 Folder Settings 4t Upload File

There are no items in Home. Click Help for more information about this page.

597

http://localhost/Reports
http://KERRIGAN:80/Reports

Creating a SQL Server VM

Installing sample databases

The SQL Server sample databases can be found here:
http://msftdbprodsamples.codeplex.com/

You can choose to install both SQL Server 2012 OLTP and DW samples. If you are going
to try the recipes that involve Analysis Services cubes, then you definitely have to install
the DW samples.

Complete instructions on how to install the sample databases can be found at:

http://social.technet.microsoft.com/wiki/contents/articles/3735.
sgl-server-samples-readme-en-us.aspx#Readme for Adventure Works
Sample Databases

Installing PowerShell V3

As Windows Server 2008 R2 does not natively come with PowerShell V3, we will need to install
it separately.

1. Launch VMWare Player.
2. Play SQL2012VM and login.

3. Copy the Windows Management Framework file from your host to your VM.
If you have installed VMWare Tools, you should be able to either drag-and-drop
or copy-and-paste the file from the host to the guest VM. At the time of writing,
the filename was Windows6.1-KB2506143-x64 .msu.

4. Double-click on the executable file.

5. You will be prompted to confirm that you want to install this update. Click on Yes
as shown in the following screenshot:

Windows Update Standalone aller |

Do you want to install the following Windows software update?

Update for Windows (KE2506143)

598

http://msftdbprodsamples.codeplex.com/
http://msftdbprodsamples.codeplex.com/
http://social.technet.microsoft.com/wiki/contents/articles/3735.sql-server-samples-readme-en-us.aspx#Readme_for_Adventure_Works_Sample_Databases
http://social.technet.microsoft.com/wiki/contents/articles/3735.sql-server-samples-readme-en-us.aspx#Readme_for_Adventure_Works_Sample_Databases
http://social.technet.microsoft.com/wiki/contents/articles/3735.sql-server-samples-readme-en-us.aspx#Readme_for_Adventure_Works_Sample_Databases

Appendix D

6. Agree to the license terms. Click on 1 Accept.

7. Wait for the installation to complete.

2 Download and Install Updates

8. Restart your VM.

599

Creating a SQL Server VM

9. Confirm that PowerShell V3 is installed by launching the PowerShell console.
Click on the console icon as shown in the following screenshot:

10. Type $host .version in the console and you should see the value 3 for the
Major build, as shown in the following screenshot:

= Administrator: Windows PowerShell
Windows PowerShell
Copyright <C»> 2812 Microsoft Corporation. All rights reserved.

PS C:sUsers“Administrator> Shost.version

Minor Build Revision

PS C:xUsers“Administrator’

600

Symbols

7-Zip
URL, for downloading 468
dtsx file

SSIS package, downloading to 433-435

.ispac file

about 442

deploying 443
-LogTruncationType parameter 329
.NET language

C# 18

PowerShell 18

VB.NET 18
.NET library 516
-NoRecovery parameter 329
.rdl file 412

A

ActiveDirectory 7
Add-Content cmdlet 477
AFTER trigger

creating, in PowerShell 90-94
aliases

testing, in PowerShell 466, 467
APIPA scheme 574
arrays 505, 536
assembly

creating, in SQL Server 374-376
asymmetric keys

creating 293-298
attachment

e-mail, sending with 482-484
authentication modes

listing, PowerShell used 210, 211

Index

listing, SMO used 210, 211
modifying 211-214
Automatic Private IP Addressing.
See APIPA scheme

backtick 527, 528
Backup-ASDatabase cmdlet 450
backup device

creating, PowerShell used 310, 311
backup file

backup header information, listing

from 312-315

gathering 337, 338
backup header information

listing, from backup file 312-315
backup history

listing, for SQL Server instance 309
BackupRestoreBase 321
Backup-SqlDatabase cmdlet

about 319

used, for creating filegroup backup 329-331
bcp

about 102

used, for performing bulk export 102-104

used, for performing bulk import 110-113
binary data

extracting, from SQL Server 370-373

storing, into SQL Server 366-369
block comments 504, 533
blocking process

killing, in SQL Server 131, 132

listing, in SQL Server instance 128-130
bloggers, PowerShell 546

bulk export, performing

bcp used 102-104

Invoke-Sglemd used 100-102
bulk import, performing

bcp used 110-113

BULK INSERT used 105-109
BULK INSERT

used, for performing bulk import 105-109
BulkLogged recovery model 308
Business Intelligence (Bl) 386
Business Intelligence Development Studio

(BIDS) 442

C

callable code block 525
Cascading Style Sheets (CSS) 364
C# code 8
embedding, in PowerShell 484-486
cell-level encryption
setting up, steps 298
certificate
about 293
creating, PowerShell used 291, 292
creating, SMO used 292
URL, for info 293
change tracking
disabling, to target database 275, 276
enabling, to target database 275, 276
change tracking (CT) 276
ChangeTrackingEnabled property 276
Cisco 7
Citrix 7
Clear-Host cmdlet 500
cmdlets 8 23, 520, 526
cmdlets, file manipulation
Add-Content 477
Copy-ltem 477
Get-Content 477
Join-Path 477
Move-ltem 478
New-ltem 477
Remove-ltem 478
Test-Path 477
cmdlets, folder manipulation
Copy-ltem 475
Get-Childitem 475

602

Move-ltem 475

New-ltem 475

Remove-ltem 475

Test-Path 475
Code Access Security (CAS) 377
commands

chaining 524, 525
Comma-Separated Value (CSV) 118
comment-based help

about 458, 503

enabling 503

URL, for info 459
comments 504, 533
Common Language Runtime (CLR) 351, 376
common operators, PowerShell 502
common patterns, regular expressions 472
Compare-Object cmdlet 499
concepts, PowerShell

aliases, of cmdlets 523, 524

cmdlets 520

commands, chaining 524, 525

.NET 522

object oriented 522

package 525
condition

about 264

creating 264-268
conditional statements 535
configuration settings, SQL Server

listing 51-54
configuring

domain controller 569-576
ConnectioninfoBase class 281
ConnectioninfoExtended library 280, 286
Connectioninfo library 280, 286
contents

extracting, of trace file 284-288
Continue() method 50
ConvertFrom-Csv cmdlet 526
ConvertFrom-Json cmdlet 526
ConvertFrom-SecureString cmdlet 527
ConvertTo-Csv cmdlet 526
ConvertTo-Html cmdlet 526
ConvertTo-Json cmdlet 526
ConvertTo-SecureString cmdlet 527
ConvertTo-Xml cmdlet 526
Copy-ltem cmdlet 475, 477, 499

CreateCatalogltem method 414
CreateFolderOnSqlServer method 427
Create method 290
credential

about 510

creating 244, 245
Ccsv

Get-Process cmdlet, exporting to 467, 468
Cumulative Update (CU) 127

D

data
extracting, from web service 490-492
database
attaching, with data files 145-149
copying, PowerShell used 149, 150
copying, SMO used 150, 151
creating, with default properties 67, 68
detaching, programmatically 143, 144
differential backup, creating on 324-326
dropping, PowerShell used 72, 73
dropping, SMO used 72,73
filegroup, adding to 154
restoring 332-340
database backup
creating, on mirrored backup files 321-323
Database Mail
setting up, programmatically 168-177
working 176, 177
database mappings
listing 222-224
database master key
about 289
creating 289, 290
database objects
searching, PowerShell used 60-66
database owner
changing 73-75
database properties
altering, PowerShell used 68-71
altering, SMO used 68-71
database recovery model
modifying 306, 307
database, restoring
backup files, gathering 337, 338
differential backup, restoring 340

full backup, restoring with NORECOVERY
option 339

transaction logs, restoring 340, 341
database role

creating 237-240
database user

creating, PowerShell used 232-234

creating, SMO used 232-234

permissions, assigning to 234-236
data files

database, attaching with 145-149
data source

updating, for SSRS report 409-412
DataSourceDefinition class

about 407

properties 407, 408
DateTimeFormatinfo class

URL, for info 460
date-time format strings, PowerShell 502
DBCC commands

running, PowerShell used 167
DDL events

WMI Server event alerts, setting

up for 136-142

DependentServices property 47
DeployProject method 443
development environment 36
differential backup

creating, on database 324-326
DisableNameChecking parameter 22
disk space usage

checking, for SQL Server instance 133-135
domain accounts

creating 577-579
domain controller

configuring 569-576
DropAndMove method 161
Dynamically Linked Libraries (DLL) 12, 376

e-mail

sending, with attachment 482-484
empty virtual machine

creating 553-555
EnumFragmentation method 163, 166
EnumObjects method 66

EnumProcesses method 129
error handling 539
error messages
displaying, in PowerShell 461, 462
escape and line continuation 527, 528
evaluation modes, policy
CheckOnChanges 271
CheckOnSchedule 271
Enforce 271
none 271
event log
reading 481, 482
Excel format
SSRS report, downloading in 396-400
Exchange 7
execution policies
about 11
AllSigned 498
Bypass 498
modifying 498
RemoteSigned 498
Restricted 498
Undefined 498
Unrestricted 498
execution policy, PowerShell scripts
about 519
AllSigned 519
Bypass 519
RemoteSigned 519
Restricted 519
Undefined 519
Unrestricted 519
Export-Clixml cmdlet 468, 526
Export-Csv cmdlet 468, 526
ExpressionNodeOperator
URL 268
ExpressionNodes
URL 268
Extensible Stylesheet Language. See XSL

F

facet properties
listing 252-254
facets
listing 252-254

604

failed login attempts
listing, in SQL Server instance 220, 221
features, PowerShell v3
Improved Integrated Scripting Environment
(ISE) 10
Module AutoLoading 8
robust sessions 8
scheduled jobs 8
simplified language syntax 9
web service support 9
workflows 8
filegroup
adding, to database 154
indexes, moving to 158-161
secondary data files, adding to 156, 157
filegroup backup
creating, Backup-SqlDatabase cmdlet
used 329-331
file list information
listing 312-315
file manipulation
URL, for info 478
files
manipulating, in PowerShell 476, 477
searching, in PowerShell 478-480
SSIS package, downloading to 433-435
FolderExistsOnSqlServer method 427
folders
creating, in SSIS instance 425-427
creating, in SSIS package store 425-427
managing, in PowerShell 474-476
Foreach loop 506
Foreach-Object cmdlet 47, 354, 369, 419,
499
for loop 506
Format-List cmdlet 526
format patterns, timestamp
about 460
dd 460
dddd 460
hh 460
HH 460
mm 460
MM 460
MMM 460
MMMM 460

ss 460

tt 460

yy 460

yyyy 460
Format-Table cmdlet 526
FreelSO Creator

URL 551
full backup

restoring, with NORECOVERY 339
full database backup

creating, PowerShell used 316-319
Full recovery model 308
function

about 8, 507, 539

script, converting into 540-542

G

Get-Alias cmdlet 466, 526
Get-Childltem cmdlet 369, 475, 478, 499,
520, 526

Get-Command cmdlet 497, 521
Get-Content cmdlet 153, 414, 477, 499, 526
Get-Credential cmdlet 527
Get-Date cmdlet 526
GetDtsServerPackagelnfos method 434
Get-EventLog cmdlet 526
Get-ExecutionPolicy cmdlet 519, 527
Get-Help cmdlet

about 497,521

PowerShell script, documenting for 456-459
Get-History cmdlet 500
Get-Hotfix cmdlet 126
Get-HotFix cmdlet 526
GetltemDataSources method 411
GetltemDefinition method 419
Get-Location cmdlet 500
Get-Member cmdlet 71 497,521, 522, 526
GetName method 282
GetOrdinal method 282, 287
GetPolicies method 423
Get-Process cmdlet

about 467, 500, 526

exporting, to CSV 467, 468

exporting, to XML 467, 468

URL, for info 465
Get-Service cmdlet 45, 48, 526

Get-SSRSItems fun 542
GetValue method 282, 287
Get-WmiObject cmdlet 41, 526
Global Assembly Cache (GAC) 21
Guest 0S
Windows Server 2008 R2,
installing as 556-566

H

hash 537
hash table 505
help cmdlet 499
here-string 504, 529
here-string variable 354
hMailServer 177

URL 177
Hotfix 127
HTML report

creating, PowerShell used 486, 487

Import-Clixml cmdlet 526
Import-Csv cmdlet 526
ImportPolicy method
about 263, 264
parameters 264
ImportPolicy method, parameters
ImportEnabledState 264
overwriteExistingCondition 264
overwriteExistingPolicy 264
XMLReader 264

Improved Integrated Scripting Environment

(ISE) 10

index
creating, PowerShell used 95-98
creating, SMO used 95-98
moving, to filegroup 158-161
rebuilding 164-166
reorganizing 164-166

index fragmentation

investigating, PowerShell used 162,-164

investigating, SMO used 162-164
index type

filtered 98

FullText 98

spatial 98 ListChildren method 387

XML 98 LoadFromDtsServer method 434
INSERT statement 354 LoadFromSqlServer method 432
installed hotfixes Load() method 21, 366

listing, in SQL Server 124-127 LoadWithPartialName() method 21
installing local network

PowerShell V3 598, 599 SQL Server instances, listing in 39-41

SQL Server 2012, on VM 580-597 log errors

SQL Server sample databases 598 listing, in SQL Server 215-219

VMWare tools 567, 569 logics 506

Windows Server 2008 R2, as login

Guest OS 556-566 creating, PowerShell used 227, 228
instance classes 18 creating, SMO used 227, 228
instance properties listing 222-224

exporting, to text file 116-120 permissions, assigning 229-231
Integrated Scripting Environment (ISE) 517 roles, assigning 229-231
Intellisense 10 LoginMode property 213
International Organization for Standardization login/user roles

(ISO) 551 listing 225, 226
Invoke-Command cmdlet 494 loops
Invoke-Expression cmdlet about 506, 537, 538

about 283, 288, 468 for 506

using 469, 470 Foreach 506
Invoke-Expression command 373 while 506
Invoke-PolicyEvaluation cmdlet 274
Invoke-Sqlcmd cmdlet M

about 100, 153, 369, 512

used, for performing bulk export 100-102 MagiclSO
Invoke-SgICmd cmdlet 354 URL 551
Invoke-WebRequest cmdlet 9 ManagedComputer object 40-44
ISO File 551 management cmdlets
ISPAC file about 508

deploying, to SSISDB 441-443 Get-Childitem 508, 526
items Get-Content 508, 526

listing, in SSRS report server 386-388 Get-Eventlog 508, 526

Get-HotFix 508, 526
J Get-Process 508, 526
Get-Service 508, 526
Join-Path cmdlet 477 Get-WmiObject 508, 526
New-WebServiceProxy 508, 526
K Start-Process 508, 526
Start-Service 508, 526
KillDatabase method 73 MasterKey class 290
KillProcess method 132 MasterKey object 290
messages
L displaying 532

ListChildren method 388, 390

Microsoft .NET Framework 4.0
installing 12
mirrored backup files
database backup, creating on 321-323
mixed assembly error 28
module 24
Module AutoLoading 8
modules and snap-ins 11
Move-ltem cmdlet 475, 478, 499
MSDN Add-Type
URL 486
MSDN ConvertTo-HTML
URL 488
MSDN Get-Date
URL, for info 461
MSDN Get-Process
URL, for info 465
MSDN Invoke-Expression
URL 470
MSDN Send-MailMessage
URL 484
MS Virtual PC
URL 550
multiple servers
SQL query, executingto 152, 153

Nero Burning Software

URL 551
New-Iltem cmdlet 356, 475, 477
New-WebServiceProxy cmdlet 387 526
NORECOVERY option

about 339

full backup, restoring 339

0

online piecemeal restore
performing 342-349
OPENROWSET method
URL, for info 369
operators 531
orphaned users
fixing 244, 242, 243
OverridelfAlreadyUser option 75

P

Pause() method 50
PDF format
SSRS report, downloading in 396-400
PercentCompleteEventHandler 321
permissions
assigning, to database user 234-236
assigning, to login 229-231
listing 225, 226
pipe operator 524
policies
about 252-254
creating, programmatically 268-271
evaluating, against SQL Server
instance 272-274
evaluation modes 271
exporting, from SQL Server
Management Studio 261
exporting, to XML file 257-261
importing, into SQL Server 261-263
listing 255-257
Policy Based Management (PBM) 253
PolicyStore parameter 256, 257
PowerlSO
URL 551
PowerShell
about 7, 36, 515
administrative tasks 116
administrator, scripting 36
advantages 516
AFTER trigger, creating 90-94
aliases 499, 500
aliases, testing 466, 467
arrays 505
asymmetric keys, creating 293-298
attachment, sending with e-mail 482-484
backup header information, listing from
backup file 312-315
backup history, listing for SQL Server
instance 309
capabilities 386
C# code, embedding 484-486
certificate, creating 291, 292
change tracking, disabling to target
database 275, 276

607

change tracking, enabling to target
database 275, 276

cmdlets, for displaying output 500

comments 504

common operators 502

comnment based help, enabling 503

condition, creating 264-268

credentials 510

database backup, creating on mirrored
backup files 321-323

database, creating with default
properties 67, 68

database, dropping 72, 73

database master key, creating 289, 290

database recovery model,
modifying 306, 307

database, restoring 332-341

database role, creating 237-340

data, extracting from web service 490-492

date-time format strings 502

differential backup, creating on
database 324-326

environment, setting up 516

error messages, displaying 461, 462

execution policy, getting 498

execution policy, modifying 498

execution policy, setting 498

facet properties, listing 252-254

facets, listing 252-254

file list information, listing 312-315

files, manipulating 476, 477

files, searching 478-480

folders, managing 474-476

functions 507

hardcoded query, executing 99, 100

hash table 505

here-string 504

index, rebuilding 164-166

index, reorganizing 164-166

instance configuration settings,
modifying 55-60

Invoke-Expression, using 469, 470

learning 497

logics 506

loops 506

management cmdlets 508

online piecemeal restore,
performing 342-349
orphaned users, fixing 241-243
permissions, assigning to database user 234-
236
permissions, assigning to login 229-231
podcasts 547
policies, listing 255-257
policy, evaluating 272-274
policy, exporting to XML file 257-261
policy, importing into SQL Server 261-263
profiler trace event, running 276-283
profiler trace event, saving 276-283
regex characters 504, 505
regex patterns 504, 505
regular expressions, testing 470-474
resources 543
roles, assigning to login 229-231
script, running 499
scripts, running 38, 517, 518
security cmdlets 508
special characters 500
special variables 501
SQL script, executing 99, 100
SQL Server Assemblies, adding 509
SQL Server event alert, adding 187, 188
SQL Server job, creating
programmatically 183-186
SQL Server job, running
programmatically 190, 191
SQL Server Snapins, adding 509
symmetric keys, creating 293-298
timestamp, getting in 459, 460
transaction log backup, creating 327, 328
Transparent Data Encryption (TDE),
setting up 299-303
used, for adding secondary data files to file-
group 156, 157
used, for altering database properties 68-71
used, for copying database 149, 150
used, for creating backup device 310, 311
used, for creating database user 232-234
used, for creating filegroup 154
used, for creating full database
backup 316-319
used, for creating HTML report 486, 487
used, for creating index 95-98

used, for creating login 227, 228
used, for creating policy 268-271
used, for creating RSS feed 358-363
used, for creating SQL Server
operator 181, 182
used, for creating stored procedure 85-89
used, for creating table 76, 78
used, for creating view 82-84
used, for executing SSIS package 430-432
used, for extracting content of trace
file 284-288
used, for investigating index
fragmentation 162-164
used, for listing authentication
modes 210, 211
used, for listing processes 462-465
used, for listing SQL Server jobs 178-180
used, for parsing XML 488, 489
used, for running DBCC commands 167
used, for scheduling SQL Server job 192,
193-201
used, for searching database objects 60-66
used, for setting up Database Mail 168-177
utility cmdlets 508
webcasts 547
Windows event log, reading from 481, 482
PowerShell, books
PowerShell V2 543
PowerShell V2 Free E-books 544, 545
PowerShell ISE
about 37, 276
Command Pane 37
Script Pane 37
PowerShell Remoting
about 492
URL, forinfo 495
using 493, 494
PowerShell, resources
bloggers 546, 547
blogs 545
books 543-545
sites 545
PowerShell script
documenting, for Get-Help cmdlet 456-459
PowerShell scripts
execution policy 519
running 27,517, 518

PowerShell syntax
about 527
arrays 536
comments 533
conditional statements 535
error handling 539
escape and line continuation 527, 528
hashes 537
loop 537,538
message display 532
operators 531
regular expressions 535
special variables 534
statement terminators 527
variables 528, 529
PowerShell V2
books 543, 544
SQLPS module, importing 509
Where-Object syntax 498
PowerShell V2 Free E-books 544, 545
PowerShell V3
books 543
features 8
installing 12, 598, 599
Where-Object syntax 498
PowerShell v3 ISE
enabling 13
PowerShell v3 Sneak Peek Screencast
URL 13
processes
listing, PowerShell used 462-465
Process ID (PID)
about 501
profiler trace event
running 276-283
saving 276-283
properties
listing, for SSRS report 388-390
proxy
creating, in SQL Server 246-248
PSCX
about 548
URL 548
PSDrive 11
PSProvider 10
PSScheduledJob module 8

Q

query
executing, from PowerShell 99, 100

Quest 7

Quick Fix Engineering (QFE) 127

RDL files

downloading, from SSRS report

server 416-420

ReadErrorLog method 219
Read-Host cmdlet 526
Really Simple Syndication. See RSS
RecoveryModel property

about 308

modifying 307
Recovery Point Objective (RPO) 308
Recovery Time Objective (RTO) 308
Refresh() method 50
regex characters, PowerShell 504, 505
regex methods

URL, for info 474
regex patterns, PowerShell 504, 505
Register-WmiEvent cmdle 142
regular expressions

about 472,535

common patterns 472

testing, in PowerShell 470-474
Release Candidate (RC) 13
Released to Manufacturing (RTM) 516
RemoteSigned 11
Remove-ltem cmdlet 475, 499
Render method 399
Report Manager

SSRS report, uploading to 412-415
ReportService2010 web service 387
ReportViewer

used, for displaying SSRS report 391-395

working 393
ReportViewer control 396
Restore-ASDatabase cmdlet 452
robust sessions, PowerShell v3 8
roles

assigning, to login 229-231
RSS 363

610

RSS feed

creating, from SQL Server content 358-363

creating, PowerShell used 358-363
creating, T-SQL used 358-363
URL, for info 363
XSL, applying to 363, 365
RTM 126
running processes
listing, in SQL Server instance 128-130

S

sample code
working with 12
SaveToDtsServer method 430
SaveToSQLServer method 430
SaveToXml method 434
script
converting, into function 540-542
running 38, 499
secondary data files
adding, to filegroup 156, 157
security cmdlets
about 508
ConvertFrom-SecureString 508, 527
ConvertTo-SecureString 508, 527
Get-Credential 508, 527
Get-ExecutionPolicy 508, 527
Set-ExecutionPolicy 508, 527
security levels
EXTERNAL_ACCESS 377
SAFE 377
UNSAFE 377
semicolon 527
Serverinstance property 40
service accounts
about 551
listing 204, 205
modifying 206-209
service packs
listing, in SQL Server 124-127
Set-Alias cmdlet 366
Set-ExecutionPolicy cmdlet 519, 527
SetltemDataSources method 412 415
Set-Location cmdlet 500
set_Login method 31
SetOwner method 75

SetPolicies method 425
SharePoint 7
Simple recovery model 308
simplified language syntax 9
single line comments 504, 533
SMO
about 18, 36
certificate, creating 292
database, dropping 72, 73
installing 18, 19
instance classes 18
permissions, assigning to database
user 234-236
permissions, assigning to login 229-231
roles, assigning to login 229-231
Transparent Data Encryption (TDE),
setting up 299-303
used, for adding secondary data files
to filegroup 156, 157
used, for altering database
properties 68-71
used, for copying database 150, 151
used, for creating database user 232-234
used, for creating filegroup 154
used, for creating index 95-98
used, for creating login 227, 228
used, for creating SQL Server
operator 181, 182
used, for creating stored procedure 85-89
used, for creating table 79-81
used, for creating view 82-84
used, for investigating index fragmentation
162-164
used, for listing authentication
modes 210, 211
used, for scheduling SQL Server job 192-201
utility classes 18
SMO assemblies
loading 20, 21
working 21
SMO Certificate object 292
SMO libraries
gaining 18
SMO Server Object
creating 512
exploring 32
working 33

snap-in 24
Sort-Object cmdlet 499
special characters 500
special variables 501, 534
SQLCLR assemblies
about 381
URL, for info 379
SqlConnectioninfo connection object 281
SQLConnection object 438
SQL Login 225
SQL Management Objects. See SMO
SQLPS and SQLASCMDLETS cmdlets
list 25, 26
SQLPS module
importing 509
SQLPSX
about 520, 548
URL 548
SQL query
executing, to multiple servers 152, 153
SQL-related cmdlets
discovering 22
working 23
SQL-related modules
discovering 23
SQL script
executing, from PowerShell 99, 100
SQL Server
about 36, 252, 386
assembly, creating 374-376
authentication modes, modifying 211-214
binary data, extracting from 370-373
binary data, storing into 366-369
blocking process, killing 131, 132
bloggers 547
configuration settings, listing 51-54
credential, creating 244, 245
database, detaching
programmatically 143, 144
database inventory, creating 120-123
database owner, changing 73, 75
installed hotfixes, listing 124-127
instance configuration settings 55-60
instance properties, exporting to
text file 116-120
log errors, listing 215-219
policy, importing into 261-263

611

proxy, creating 246-248
service accounts, listing 204, 205
service accounts, modifying 206-209
service packs, listing 124-127
services, discovering 43, 44
services, starting 46-50
services, stopping 46-50
trigger, creating 90-94
working, with PowerShell 10, 11
XML content, extracting from 355-357
XML content, inserting into 352-354
SQL Server 2012
installing 12
installing, on VM 580-597
SSAS cmdlets, listing 447, 448
SQL Server 2012 trial version ISO file
URL, for downloading 551
SQL Server Agent Account 552
SQL Server Analysis Services. See SSAS
SQL Server and PowerShell
working with 10
SQL Server Assemblies
adding 509
SQL Server content
RSS feed, creating from 358-363
SQL Server database
user-defined assemblies, creating in 378
SQL Server database inventory
creating 120-123
SQL Server Data Tools (SSDT) 442
SQL Server event alert
adding 187, 188
SQL Server instance
backup history, listing for 309
blocking processes, listing 128-130
disk space usage, checking for 133-135
failed login attempts, listing in 220, 221
running processes, listing 128-130
SQL Server instance inventory
about 116
creating 116-120
SQL Server instance object
creating 29
working 30
SQL Server instances
about 39, 552
listing, in local network 39-41

612

SQL Server Integration Services. See SSIS
SQL Server job
creating, programmatically 183-186
running, programmatically 190, 191
scheduling, PowerShell used 192-201
scheduling, SMO used 192-201
SQL Server jobs
listing, PowerShell used 178-180
SQL Server Management Objects. See SMO
SQL Server Management Studio
policy, exporting from 261
SQL Server operator
creating, PowerShell used 181, 182
creating, SMO used 181, 182
SQL Server PowerShell documentation
URL 13
SQL Server PowerShell hierarchy
exploring 14-16
working 17, 18
SQL Server processes
blocking 510
running 510
SQL Server proxy
creating 246, 248
SQL Server Reporting Services. See SSRS
SQL Server sample databases
installing 598
SQL Server Service Account 552
SQL Server services
discovering 43, 44
starting 46-50
stopping 46-50
SQL Server Snapins
adding 509
SSAS
about 386, 448
database, backing up 450
database, restoring 451, 452
instance properties, listing 448, 449
SSAS cmdlets
listing 447, 448
SSAS cube
about 452
processing 452-454
SSAS database
backing up 450
restoring 451, 452

SSAS database backup
creating 450
SSAS instance properties
listing 448, 449
SSAS Object
creating 513
SSIS 386
SSISDB
catalog, creating 435-438
folder, creating 439, 440
ISPAC file, deploying to 441-443
SSIS package 444-446
SSISDB catalog
creating 435-438
SSISDB folder
creating 439, 440
SSIS instance
folders, creating in 425-427
SSIS Object (SQL Server 2005/2008/2008R2)
creating 513
SSIS Object (SQL Server 2012)
creating 513
SSIS package
deploying, to package store 428-430
downloading, to .dtsx file 433-435
executing 444-446
executing, PowerShell used 430-432
SSIS package store
folders, creating in 425-427
SSIS package, deploying to 428-430
SSRS
about 386
data source, creating 404-408
folder, creating 400-404
SSRS data source
about 404
creating 404-408
SSRS folder
creating 400-404
SSRS Proxy Object
creating 513
SSRS report
data source, updating 409-412
displaying, ReportViewer used 391-395
downloading, in Excel format 396-400
downloading, in PDF format 396-400
properties, listing 388-390

uploading, to Report Manager 412-415
user, adding to 421-425
SSRS report properties
listing 388-390
SSRS report server
items, listing in 386-388
RDL files, downloading from 416-420
standard Date and Time format strings
URL, for info 461
Start() method 50
Start-Process cmdlet 526
Start-Service cmdlet 526
statement terminators 527
Stop() method 50
Stop-Process cmdlet 500
stored procedure
creating, PowerShell used 85-89
creating, SMO used 85-89
string interpolation 530
switch statement 473
symmetric keys
creating 293-298

T

table, creating

PowerShell used 76-78

SMO used 79-81
tasks, modules

list installed modules 24

list loaded modules 24

load a specific module 24

show commands in module 24
tasks, snap-ins

list installed snap-ins 24

list loaded snap-ins 24

load specific snap-in 24

show commands in snap-in 24
Template Definition File (TDF) 277
Test-Path cmdlet 475, 477
text file

instance properties, exporting to 116-120
TextHeader property 84
TextMode property 84
timestamp

about 459

format patterns 460

613

getting, in PowerShell 459, 460
trace file

content, extracting 284-288
TraceFile class 286, 287
TraceFile object 281, 282
TraceServer class 280
TraceServer object 282
transaction log backup

creating 327, 328
transaction logs

restoring 340, 341
Transparent Database Encryption (TDE)

about 252, 299

setting up, programmatically 299-303
trigger

creating, in SQL Server 90-94
TRUNCATE TABLE command 112
T-SQL

about 36

used, for creating RSS feed 358-363

U

Unregister-Event cmdlet 142

user-defined assemblies
extracting 379-383
listing, in SQL Server database 378
resaving, back to filesystem as DLLs 379-383

users
adding, to SSRS report 421-425
listing 222-224

utility classes 18

utility cmdlets
about 508, 526
ConvertFrom-Csv 508, 526
ConvertFrom-Json 508, 526
ConvertTo-Csv 508, 526
ConvertTo-Html 508, 526
ConvertTo-Json 508, 526
ConvertTo-Xml 508, 526
Export-Clixml 508, 526
Export-Csv 508, 526
Format-List 508, 526
Format-Table 508, 526
Get-Alias 508, 526
Get-Date 508, 526

614

Get-Member 508, 526
Import-Clixml 508, 526
Import-Csv 508, 526
Read-Host 508, 526

\'}

variables 528, 529
view
creating, PowerShell used 82-84
creating, SMO used 82-84
Virtual Box
URL 550
Virtual Machine Computer Administrator
Account 552
Virtual Machine Computer Name 552
Virtual Machine Name 552
Virtual Machine (VM)
about 550
accounts 552
logging in 553
SQL Server 2012, installing on 580-597
Visual Studio 2010 trial version ISO
URL, for downloading 552
VMWare 7
tools, installing 567-569
URL, for shortcuts 553
VMWare Player
about 551
URL 550
URL, for documentation 551
URL, for downloading 551
VMWare tools
installing 567, 569
VMWare Workstation
URL 550

w

Web-based Enterprise Management
(WBEM) 40

web service

data, extracting from 490-492
web service proxy 387
Web Services for Management (WSMan) 494
web service support 9
Where-Object cmdlet 219, 390, 499

Where-Object syntax 117
for PowerShell V2 498
for PowerShell V3 498
Windows event log
reading, from PowerShell 481, 482
Windows Login 225
Windows Management Framework
URL, for downloading 552
Windows Management Framework 3.0
installing 13
Windows Management Instrumentation
(WMI) 7, 40,134,140
Windows PowerShell Tip of the
Week- Formatting Dates and Times
URL, for info 461
Windows PowerShell Workflow (PSWF) 8
Windows Remote Management (WinRM) 494
Windows Server 7
Windows Server 2008 R2
installing, as Guest 0S 556-566
URL, for downloading 551
Windows Server Hyper-V Server 2008 R2
URL 550
WMI Query Language (WQL) 140, 142
WMI Server event alerts
setting up, for DDL events 136-142

workflows, PowerShell v3 8
Write-Debug cmdlet 500, 532
Write-Error cmdlet 500, 532
Write-EventLog cmdlet 500, 532
Write-Host cmdlet 500, 532
Write-Output cmdlet 499, 500, 532
Write-Progress cmdlet 500, 532
Write-Verbose cmdlet 500, 532
Write-Warning cmdlet 500, 532

X

XML
about 351

Get-Process cmdlet, exporting to 467, 468

parsing, PowerShell used 488, 489
XML content

extracting, from SQL Server 355-357

inserting, into SQL Server 352-354
XML file

policy, exporting to 257-261
XSL

applying, to RSS feed 363-365
XslCompiledTransform variable 366

615

enterprise &

professional expertise distilled

PUBLISHING

Thank you for buying
SQL Server 2012 with PowerShell V3 Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . PacktPub. com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

' enferprise &

professional expertise distiled

"PUBLISHING

Microsoft Windows

PowerShell 3.0 First Look
ISBN: 978-1-849686-44-0 Paperback: 200 pages

A quick, succinct guide to the new and exciting features
in PowerShell 3.0

1. Explore and experience the new features found in
PowerShell 3.0

Microsoft Windo‘f\fs 2. Understand the changes to the language and the
PowerShell 3.0 First Look reasons why they were implemented

3. Quickly get up to date with the latest version of
Powershell with concise descriptions and simple
Adam Driscoll . enterprise examp|eS

Microsoft SQL Server 2012
Security Cookbook
ISBN: 978-1-849685-88-7 Paperback: 322 pages

Over 70 practical, focused recipes to bullet-proof your
SQL Server database and protect it from hackers and
security threats

1. Practical, focused recipes for securing your SQL
Microsoft SQL Server 2012 Server database

Security Cookbook
2. Master the latest techniques for data and code

encryption, user authentication and authorization,
protection against brute force attacks, denial-of-
service attacks, and SQL Injection, and more

Rudi Bruchez [_l".:".l_':-i__'l'] enterprise®

3. Alearn-by-example recipe-based approach that
focuses on key concepts to provide the foundation
to solve real world problems

Please check www.PacktPub.com for information on our titles

enterprise 8

professional expertise distilled

"PUBLISHING

Microsoft SQL Server 2012
Integration Services:
An Expert Cookbook

Reza Rad

Pedro Perfeito [I".

Microsoft SQL Server 2012
Integration Services: An
Expert Cookbook

ISBN: 978-1-849685-24-5 Paperback: 564 pages

Over 80 expert recipes to design, create, and deploy
SSIS packages

1. Full of illustrations, diagrams, and tips with clear
step-by-step instructions and real time examples

2. Master all transformations in SSIS and their
usages with real-world scenarios

3. Learn to make SSIS packages re-startable and
robust; and work with transactions

Ritesh Shah

Microsoft SQL Server 2012
Performance Tuning Cookbook

Bihag Thaker [PACKT]enterprise™

Microsoft SQL Server
2012 Performance Tuning
Cookbook

ISBN: 978-1-849685-74-0 Paperback: 478 pages

80 recipes to help you tune SQL Server 2012 and
achieve optimal performance

1. Learn about the performance tuning needs for
SQL Server 2012 with this book and ebook

2. Diagnose problems when they arise and employ
tricks to prevent them

3. Explore various aspects that affect performance
by following the clear recipes

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
with SQL Server
and PowerShell
	Introduction
	Before you start: Working with SQL Server and PowerShell
	Working with the sample code
	Exploring the SQL Server PowerShell hierarchy
	Installing SMO
	Loading SMO assemblies
	Discovering SQL-related cmdlets and modules
	Creating a SQL Server instance object
	Exploring SMO server objects

	Chapter 2: SQL Server and PowerShell Basic Tasks
	Introduction
	Listing SQL Server instances
	Discovering SQL Server services
	Starting/stopping SQL Server services
	Listing SQL Server configuration settings
	Changing SQL Server instance configurations
	Searching for database objects
	Creating a database
	Altering database properties
	Dropping a database
	Changing a database owner
	Creating a table
	Creating a view
	Creating a stored procedure
	Creating a trigger
	Creating an index
	Executing a query / SQL script
	Performing bulk export using Invoke-Sqlcmd
	Performing bulk export using bcp
	Performing bulk import using BULK INSERT
	Performing bulk import using bcp

	Chapter 3: Basic Administration
	Introduction
	Creating a SQL Server instance inventory
	Creating a SQL Server database inventory
	Listing installed hotfixes and service packs
	Listing running/blocking processes
	Killing a blocking process
	Checking disk space usage
	Setting up WMI Server event alerts
	Detaching a database
	Attaching a database
	Copying a database
	Executing a SQL query to multiple servers
	Creating a filegroup
	Adding secondary data files to a filegroup
	Moving an index to a different filegroup
	Checking index fragmentation
	Reorganizing/rebuilding an index
	Running DBCC commands
	Setting up Database Mail
	Listing SQL Server jobs
	Adding a SQL Server operator
	Creating a SQL Server job
	Adding a SQL Server event alert
	Running a SQL Server job
	Scheduling a SQL Server job

	Chapter 4: Security
	Introduction
	Listing SQL Server service accounts
	Changing SQL Server service account
	Listing authentication modes
	Changing authentication mode
	Listing SQL Server log errors
	Listing failed login attempts
	Listing logins, users, and database mappings
	Listing login/user roles and permissions
	Creating a login
	Assigning permissions and roles to a login
	Creating a database user
	Assigning permissions to a database user
	Creating a database role
	Fixing orphaned users
	Creating a credential
	Creating a proxy

	Chapter 5: Advanced Administration
	Introduction
	Listing facets and facet properties
	Listing policies
	Exporting a policy
	Importing a policy
	Creating a condition
	Creating a policy
	Evaluating a policy
	Enabling/disabling change tracking
	Running and saving a profiler trace event
	Extracting the contents of a trace file
	Creating a database master key
	Creating a certificate
	Creating symmetric and asymmetric keys
	Setting up Transparent Data Encryption (TDE)

	Chapter 6: Backup and Restore
	Introduction
	Changing database recovery model
	Listing backup history
	Creating a backup device
	Listing backup header and file list information
	Creating a full backup
	Creating a backup on mirrored media sets
	Creating a differential backup
	Creating a transaction log backup
	Creating a filegroup backup
	Restoring a database to a point in time
	Performing an online piecemeal restore

	Chapter 7: SQL Server Development
	Introduction
	Inserting XML into SQL Server
	Extracting XML from SQL Server
	Creating an RSS feed from SQL Server content
	Applying XSL to an RSS feed
	Storing binary data into SQL Server
	Extracting binary data from SQL Server
	Creating a new assembly
	Listing user-defined assemblies
	Extracting user-defined assemblies

	Chapter 8: Business Intelligence
	Introduction
	Listing items in your SSRS Report Server
	Listing SSRS report properties
	Using ReportViewer to view your SSRS report
	Downloading an SSRS report in Excel and PDF
	Creating an SSRS folder
	Creating an SSRS data source
	Changing an SSRS report's data source reference
	Uploading an SSRS report to Report Manager
	Downloading all SSRS report RDL files
	Adding a user with a role to an SSRS report
	Creating folders in an SSIS package store and MSDB
	Deploying an SSIS package to the package store
	Executing an SSIS package stored in the package store or File System
	Downloading an SSIS package to a file
	Creating an SSISDB catalog
	Creating an SSISDB folder
	Deploying an ISPAC file to SSISDB
	Executing an SSIS package stored in SSISDB
	Listing SSAS cmdlets
	Listing SSAS instance properties
	Backing up an SSAS database
	Restoring an SSAS database
	Processing an SSAS cube

	Chapter 9: Helpful PowerShell Snippets
	Introduction
	Documenting PowerShell script for Get-Help
	Getting a timestamp
	Getting additional error messages
	Listing processes
	Getting aliases
	Exporting to CSV and XML
	Using Invoke-Expression
	Testing regular expressions
	Managing folders
	Manipulating files
	Searching for files
	Reading an event log
	Sending e-mail
	Embedding C# code
	Creating an HTML report
	Parsing XML
	Extracting data from a web service
	Using PowerShell Remoting

	Appendix A: SQL Server and PowerShell CheatSheet
	Learning PowerShell
	PowerShell V2 versus V3 Where-Object syntax
	Changing execution policy
	Running a script
	Common aliases
	Displaying output
	Special characters
	Special variables
	Common operators
	Common date-time format strings
	Comment based help
	Here-string
	Common regex characters and patterns
	Arrays and hash tables
	Arrays and loops
	Logic
	Functions
	Common Cmdlets
	Import SQLPS module
	Add SQL Server Snapins
	Add SQL Server Assemblies
	Getting credentials
	Running and blocking SQL Server processes
	Read file into an array
	SQL Server-Specific Cmdlets
	Invoke-SqlCmd
	Create SMO Server Object
	Create SSRS Proxy Object
	Create SSIS Object (SQL Server 2005/2008/2008R2)
	Create an SSIS Object (SQL Server 2012)
	Create SSAS Object

	Appendix B: PowerShell Primer
	Introduction
	What is PowerShell, and why learn another language
	Setting up the Environment
	Running PowerShell scripts
	Basics—points to remember
	Scripting syntax
	Converting script into functions
	More about PowerShell

	Appendix C: Resources
	Resources

	Appendix D: Creating a
SQL Server VM
	Introduction
	Terminology
	Downloading software
	VM details and accounts
	Creating an empty virtual machine
	Installing Windows Server 2008 R2 as
Guest OS
	Installing VMWare tools
	Configuring a domain controller
	Creating domain accounts
	Installing SQL Server 2012 on a VM
	Installing sample databases
	Installing PowerShell V3

	Index

